Magnetic Properties of Layered Transition Metal Compounds PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Magnetic Properties of Layered Transition Metal Compounds PDF full book. Access full book title Magnetic Properties of Layered Transition Metal Compounds by L.J. de Jongh. Download full books in PDF and EPUB format.

Magnetic Properties of Layered Transition Metal Compounds

Magnetic Properties of Layered Transition Metal Compounds PDF Author: L.J. de Jongh
Publisher: Springer Science & Business Media
ISBN: 9400918607
Category : Science
Languages : en
Pages : 430

Book Description
In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.

Magnetic Properties of Layered Transition Metal Compounds

Magnetic Properties of Layered Transition Metal Compounds PDF Author: L.J. de Jongh
Publisher: Springer Science & Business Media
ISBN: 9400918607
Category : Science
Languages : en
Pages : 430

Book Description
In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.

Metal Based Thin Films for Electronics

Metal Based Thin Films for Electronics PDF Author: Klaus Wetzig
Publisher: John Wiley & Sons
ISBN: 3527606475
Category : Science
Languages : en
Pages : 388

Book Description
This up-to-date handbook covers the main topics of preparation, characterization and properties of complex metal-based layer systems. The authors -- an outstanding group of researchers -- discuss advanced methods for structure, chemical and electronic state characterization with reference to the properties of thin functional layers, such as metallization and barrier layers for microelectronics, magnetoresistive layers for GMR and TMR, sensor and resistance layers. As such, the book addresses materials specialists in industry, especially in microelectronics, as well as scientists, and can also be recommended for advanced studies in materials science, analytics, surface and solid state science.

Transition Metals and Silicon

Transition Metals and Silicon PDF Author: Benjamin Geisler
Publisher: Cuvillier Verlag
ISBN: 3736949448
Category : Science
Languages : en
Pages : 237

Book Description
The present, richly illustrated book takes the reader on a tour through the field of modern spintronics, discussing key aspects such as ferromagnetic thin films, dilute magnetic semiconductors, and magnetic tunnel junctions. It demonstrates different approaches to a detailed understanding of magnetism and materials properties on the atomic scale, as required by the ongoing miniaturization of electronics. Due to their technological relevance, the focus lies on silicon and different transition metals like chromium, manganese, and iron. Among others, the following questions are addressed from the viewpoint of state-of-the-art computational physics: Is the scanning tunneling microscope capable of resolving even complex film atomic structures? How can we use its spin-sensitive form to gain insight into interactions of magnetic impurities in bulk semiconductors? Why is chromium-doped silicon especially interesting? Does one need a Seebeck coefficient to obtain spincaloric properties ab initio?

Rare Earth Transition Metal Borocarbides (Nitrides)

Rare Earth Transition Metal Borocarbides (Nitrides) PDF Author: Karl-Hartmut Müller
Publisher: Springer Science & Business Media
ISBN: 9780792368786
Category : Science
Languages : en
Pages : 472

Book Description
This volume contains most of the contributions presented at the NATO Advanced Research Workshop on Rare Earth Transition Metal Borocarbides (Nitrides): Superconducting, Magnetic and Normal State Properties, held in Dresden, Germany at 13 - 18 June 2000. The Workshop was chaired by K. -H. MUller and V. N. Narozhnyi. This was the first meeting specially focused on the quaternary rare-earth transition-metal borocarbides and nitrides - a new class of magnetic superconductors discovered in 1994. The motivation for organizing this workshop was to bring together scientists (both experimentalists and theoreticians), actively working in this field in different countries, using different methods, to exchange their points of view on the properties ofthese materials and to recognize the directions for future research. Totally 48 participants from 17 countries ofEurope, the United States, BraZil, India, Israel and Japan took part in this meeting. In addition about 15 observers (mainly from Germany) attended. The scientific Programme of the Workshop was composed of 7 sections. The section Introduction and Overview was followed by the Electronic Structure and Properties and Phonon Spectra; Magnetic Properties and CEF Effects; Interplay between Superconductivity and Magnetism; Vortex Lattice; Thin Films; Nature of the Superconducting State in Borocarbides sections. Totally 50 presentations were given (45 ofthem in oral form). Considerable attention was devoted to the characterization of the particular place of borocarbides amongst the other magnetic and superconducting systems and, especially, magnetic superconductors.

Physics of Transition Metal Oxides

Physics of Transition Metal Oxides PDF Author: Sadamichi Maekawa
Publisher: Springer Science & Business Media
ISBN: 9783540212935
Category : Technology & Engineering
Languages : en
Pages : 356

Book Description
The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.