Author: Walton B. Bishop
Publisher:
ISBN:
Category : Forecasting
Languages : en
Pages : 16
Book Description
Progressive Failure Prediction
Author: Walton B. Bishop
Publisher:
ISBN:
Category : Forecasting
Languages : en
Pages : 16
Book Description
Publisher:
ISBN:
Category : Forecasting
Languages : en
Pages : 16
Book Description
Progressive Failure Studies of Stiffened Panels Subjected to Shear Loading
Author: Damodar R. Ambur
Publisher: DIANE Publishing
ISBN: 1428995536
Category :
Languages : en
Pages : 25
Book Description
Publisher: DIANE Publishing
ISBN: 1428995536
Category :
Languages : en
Pages : 25
Book Description
Damage and Failure of Composite Materials
Author: Ramesh Talreja
Publisher: Cambridge University Press
ISBN: 0521819423
Category : Science
Languages : en
Pages : 315
Book Description
Bringing together materials mechanics and modelling, this book provides a complete guide to damage mechanics of composite materials for engineers.
Publisher: Cambridge University Press
ISBN: 0521819423
Category : Science
Languages : en
Pages : 315
Book Description
Bringing together materials mechanics and modelling, this book provides a complete guide to damage mechanics of composite materials for engineers.
Deformation and Progressive Failure in Geomechanics
Author: A. Asaoka
Publisher: Elsevier
ISBN: 9780080428383
Category : Science
Languages : en
Pages : 956
Book Description
Progressive failure has been a classical problem in the field of geotechnical engineering and has attracted considerable attention in connection with slope stability and foundation problems. It is associated with strain localization or shear banding and is also related to damage in material structures. As knowledge of the progressive failure mechanism increases, it is now necessary to establish effective communications between researchers and engineers. The International Symposium on Deformation and Progressive Failure in Geomechanics provided an opportunity for discussing recent advances in this area. A total of 136 papers were contributed from 22 countries. As well as these, the symposium proceedings also contain 8 interim technical reports on the subject by the members of the Asian Technical Committee of the International Society for Soil Mechanics and Foundation Engineering and the Japanese Geotechnical Society National Committee on Progressive Failure in Geo-structures.
Publisher: Elsevier
ISBN: 9780080428383
Category : Science
Languages : en
Pages : 956
Book Description
Progressive failure has been a classical problem in the field of geotechnical engineering and has attracted considerable attention in connection with slope stability and foundation problems. It is associated with strain localization or shear banding and is also related to damage in material structures. As knowledge of the progressive failure mechanism increases, it is now necessary to establish effective communications between researchers and engineers. The International Symposium on Deformation and Progressive Failure in Geomechanics provided an opportunity for discussing recent advances in this area. A total of 136 papers were contributed from 22 countries. As well as these, the symposium proceedings also contain 8 interim technical reports on the subject by the members of the Asian Technical Committee of the International Society for Soil Mechanics and Foundation Engineering and the Japanese Geotechnical Society National Committee on Progressive Failure in Geo-structures.
Computational Methods for Failure Analysis and Life Prediction
Failure Criteria in Fibre Reinforced Polymer Composites
Author: M. Hinton
Publisher: Elsevier
ISBN: 9780080444758
Category : Science
Languages : en
Pages : 1276
Book Description
Fiber reinforced polymer composites are an extremely broad and versatile class of material.Their high strength coupled with lightweight leads to their use wherever structural efficiency is at a premium. Applications can be found in aircraft, process plants, sporting goods and military equipment. However they are heterogeneous in construction and antisotropic, which makes making strength prediction extremely difficult especially compared to that of a metal. This book brings together the results of a 12year worldwide failure exercise encompassing 19 theories in a single volume. Each contributor describes their own theory and employs it to solve 14 challenging problems. The accuracy of predictions and the performance of the theories are assessed and recommendations made on the uses of the theories in engineering design. All the necessary information is provided for the methodology to be readily employed for validating and benchmarking new theories as they emerge. Brings together 19 failure theories, with many application examples. Compares the leading failure theories with one another and with experimental data Failure to apply these theories could result in potentially unsafe designs or over design.
Publisher: Elsevier
ISBN: 9780080444758
Category : Science
Languages : en
Pages : 1276
Book Description
Fiber reinforced polymer composites are an extremely broad and versatile class of material.Their high strength coupled with lightweight leads to their use wherever structural efficiency is at a premium. Applications can be found in aircraft, process plants, sporting goods and military equipment. However they are heterogeneous in construction and antisotropic, which makes making strength prediction extremely difficult especially compared to that of a metal. This book brings together the results of a 12year worldwide failure exercise encompassing 19 theories in a single volume. Each contributor describes their own theory and employs it to solve 14 challenging problems. The accuracy of predictions and the performance of the theories are assessed and recommendations made on the uses of the theories in engineering design. All the necessary information is provided for the methodology to be readily employed for validating and benchmarking new theories as they emerge. Brings together 19 failure theories, with many application examples. Compares the leading failure theories with one another and with experimental data Failure to apply these theories could result in potentially unsafe designs or over design.
Analysis of the Progressive Failure of Brittle Matrix Composites
Virtual Testing and Predictive Modeling
Author: Bahram Farahmand
Publisher: Springer Science & Business Media
ISBN: 0387959246
Category : Science
Languages : en
Pages : 420
Book Description
Thematerialsusedinmanufacturingtheaerospace,aircraft,automobile,andnuclear parts have inherent aws that may grow under uctuating load environments during the operational phase of the structural hardware. The design philosophy, material selection, analysis approach, testing, quality control, inspection, and manufacturing are key elements that can contribute to failure prevention and assure a trouble-free structure. To have a robust structure, it must be designed to withstand the envir- mental load throughout its service life, even when the structure has pre-existing aws or when a part of the structure has already failed. If the design philosophy of the structure is based on the fail-safe requirements, or multiple load path design, partial failure of a structural component due to crack propagation is localized and safely contained or arrested. For that reason, proper inspection technique must be scheduled for reusable parts to detect the amount and rate of crack growth, and the possible need for repairing or replacement of the part. An example of a fail-sa- designed structure with crack-arrest feature, common to all aircraft structural parts, is the skin-stiffened design con guration. However, in other cases, the design p- losophy has safe-life or single load path feature, where analysts must demonstrate that parts have adequate life during their service operation and the possibility of catastrophic failure is remote. For example, all pressurized vessels that have single load path feature are classi ed as high-risk parts. During their service operation, these tanks may develop cracks, which will grow gradually in a stable manner.
Publisher: Springer Science & Business Media
ISBN: 0387959246
Category : Science
Languages : en
Pages : 420
Book Description
Thematerialsusedinmanufacturingtheaerospace,aircraft,automobile,andnuclear parts have inherent aws that may grow under uctuating load environments during the operational phase of the structural hardware. The design philosophy, material selection, analysis approach, testing, quality control, inspection, and manufacturing are key elements that can contribute to failure prevention and assure a trouble-free structure. To have a robust structure, it must be designed to withstand the envir- mental load throughout its service life, even when the structure has pre-existing aws or when a part of the structure has already failed. If the design philosophy of the structure is based on the fail-safe requirements, or multiple load path design, partial failure of a structural component due to crack propagation is localized and safely contained or arrested. For that reason, proper inspection technique must be scheduled for reusable parts to detect the amount and rate of crack growth, and the possible need for repairing or replacement of the part. An example of a fail-sa- designed structure with crack-arrest feature, common to all aircraft structural parts, is the skin-stiffened design con guration. However, in other cases, the design p- losophy has safe-life or single load path feature, where analysts must demonstrate that parts have adequate life during their service operation and the possibility of catastrophic failure is remote. For example, all pressurized vessels that have single load path feature are classi ed as high-risk parts. During their service operation, these tanks may develop cracks, which will grow gradually in a stable manner.
Analysis of Failure in Fiber Polymer Laminates
Author: Martin Knops
Publisher: Springer Science & Business Media
ISBN: 3540757643
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
Written by Puck's pupil and appointed successor Martin Knops, this book presents Alfred Puck ́s failure model, which, among several other theories, predicts fracture limits best and describes the failure phenomena in FRP most realistically – as confirmed within the "World-wide Failure Exercise". Using Puck ́s model the composite engineer can follow the gradual failure process in a laminate and deduce from the results of the analysis how to improve the laminate design.
Publisher: Springer Science & Business Media
ISBN: 3540757643
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
Written by Puck's pupil and appointed successor Martin Knops, this book presents Alfred Puck ́s failure model, which, among several other theories, predicts fracture limits best and describes the failure phenomena in FRP most realistically – as confirmed within the "World-wide Failure Exercise". Using Puck ́s model the composite engineer can follow the gradual failure process in a laminate and deduce from the results of the analysis how to improve the laminate design.
Failure Criteria in Fibre-Reinforced-Polymer Composites
Author: M. Hinton
Publisher: Elsevier
ISBN: 0080531571
Category : Technology & Engineering
Languages : en
Pages : 1269
Book Description
Fiber reinforced polymer composites are an extremely broad and versatile class of material.Their high strength coupled with lightweight leads to their use wherever structural efficiency is at a premium. Applications can be found in aircraft, process plants, sporting goods and military equipment. However they are heterogeneous in construction and antisotropic, which makes making strength prediction extremely difficult especially compared to that of a metal. This book brings together the results of a 12year worldwide failure exercise encompassing 19 theories in a single volume. Each contributor describes their own theory and employs it to solve 14 challenging problems. The accuracy of predictions and the performance of the theories are assessed and recommendations made on the uses of the theories in engineering design.All the necessary information is provided for the methodology to be readily employed for validating and benchmarking new theories as they emerge.Brings together 19 failure theories, with many application examples.Compares the leading failure theories with one another and with experimental dataFailure to apply these theories could result in potentially unsafe designs or over design.
Publisher: Elsevier
ISBN: 0080531571
Category : Technology & Engineering
Languages : en
Pages : 1269
Book Description
Fiber reinforced polymer composites are an extremely broad and versatile class of material.Their high strength coupled with lightweight leads to their use wherever structural efficiency is at a premium. Applications can be found in aircraft, process plants, sporting goods and military equipment. However they are heterogeneous in construction and antisotropic, which makes making strength prediction extremely difficult especially compared to that of a metal. This book brings together the results of a 12year worldwide failure exercise encompassing 19 theories in a single volume. Each contributor describes their own theory and employs it to solve 14 challenging problems. The accuracy of predictions and the performance of the theories are assessed and recommendations made on the uses of the theories in engineering design.All the necessary information is provided for the methodology to be readily employed for validating and benchmarking new theories as they emerge.Brings together 19 failure theories, with many application examples.Compares the leading failure theories with one another and with experimental dataFailure to apply these theories could result in potentially unsafe designs or over design.