Production and Use of Calcined Natural Pozzolans in Concrete PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Production and Use of Calcined Natural Pozzolans in Concrete PDF full book. Access full book title Production and Use of Calcined Natural Pozzolans in Concrete by GS. Barger. Download full books in PDF and EPUB format.

Production and Use of Calcined Natural Pozzolans in Concrete

Production and Use of Calcined Natural Pozzolans in Concrete PDF Author: GS. Barger
Publisher:
ISBN:
Category : Alkali-silica reaction
Languages : en
Pages : 8

Book Description
The goal of producing concrete that provides longterm durability with regard to properties such as improved sulfate resistance and reduced susceptibility to alkali-silica reactions (ASR) has led to the development of several high-performance materials. While the use of fly ashes and ground granulated blast-furnace slags (GGBFS) in concrete is gaining acceptance in various applications, the mineralogical composition of such byproduct materials cannot be as easily controlled as a manufactured pozzolan. Since 1993, Ash Grove has developed and directed the manufacture of pozzolans to improve concrete durability, while avoiding the potential problems of byproduct pozzolan availability and uniformity. Processing of these performance-enhancing pozzolans is accomplished by thermally treating and converting crystalline clay materials to amorphous alumino silicates. These pozzolans can be interground with portland cement clinker and gypsum to produce a Type IP blended cement or they can be ground separately as mineral admixtures for concrete. These two products are produced under the specification requirements of ASTM C 1157 or ASTM C 595 for hydraulic cements and ASTM C 618 for mineral admixtures, respectively. In ASTM C 618, the classification for raw or calcined natural pozzolans is Class N. The data contained in this paper describe some of the choices that are available to manufacturers of blended hydraulic cements to "engineer" into the cementitious system the desired properties for concrete such as improved sulfate resistance, reduced permeability, and the ability to strongly mitigate ASR.

Production and Use of Calcined Natural Pozzolans in Concrete

Production and Use of Calcined Natural Pozzolans in Concrete PDF Author: GS. Barger
Publisher:
ISBN:
Category : Alkali-silica reaction
Languages : en
Pages : 8

Book Description
The goal of producing concrete that provides longterm durability with regard to properties such as improved sulfate resistance and reduced susceptibility to alkali-silica reactions (ASR) has led to the development of several high-performance materials. While the use of fly ashes and ground granulated blast-furnace slags (GGBFS) in concrete is gaining acceptance in various applications, the mineralogical composition of such byproduct materials cannot be as easily controlled as a manufactured pozzolan. Since 1993, Ash Grove has developed and directed the manufacture of pozzolans to improve concrete durability, while avoiding the potential problems of byproduct pozzolan availability and uniformity. Processing of these performance-enhancing pozzolans is accomplished by thermally treating and converting crystalline clay materials to amorphous alumino silicates. These pozzolans can be interground with portland cement clinker and gypsum to produce a Type IP blended cement or they can be ground separately as mineral admixtures for concrete. These two products are produced under the specification requirements of ASTM C 1157 or ASTM C 595 for hydraulic cements and ASTM C 618 for mineral admixtures, respectively. In ASTM C 618, the classification for raw or calcined natural pozzolans is Class N. The data contained in this paper describe some of the choices that are available to manufacturers of blended hydraulic cements to "engineer" into the cementitious system the desired properties for concrete such as improved sulfate resistance, reduced permeability, and the ability to strongly mitigate ASR.

Concrete Admixtures

Concrete Admixtures PDF Author: V.H. Dodson
Publisher: Springer Science & Business Media
ISBN: 1475748434
Category : Technology & Engineering
Languages : en
Pages : 218

Book Description


Use of Pozzolans and Special Cements in Portland-cement Concrete

Use of Pozzolans and Special Cements in Portland-cement Concrete PDF Author: United States. Army. Corps of Engineers
Publisher:
ISBN:
Category : Concrete
Languages : en
Pages : 24

Book Description


Calcined Clays for Sustainable Concrete

Calcined Clays for Sustainable Concrete PDF Author: Shashank Bishnoi
Publisher: Springer Nature
ISBN: 9811528063
Category : Technology & Engineering
Languages : en
Pages : 845

Book Description
This volume comprises the proceedings of the Third International Conference on Calcined Clays for Sustainable Concrete held in New Delhi, India in October 2019. The papers cover topics related to geology of clay, hydration and performance of blended systems with calcined clays, alkali activated binders, and economic and environmental impacts of the use of calcined clays in cement-based materials. The book presents research on influence of processing on reactivity of calcined clays, influence of clay mineralogy on reactivity, geology of clay deposits, and the environmental impact of use of calcined clays in cement and concrete and field applications of calcined clay in concrete. Apart from giving an overview of the progress of research during the last two years, this work also covers the state-of-the art on the practical aspects of production and use of calcined clays in construction. The contents of this volume will prove useful to researchers and graduate students working in the areas of cement chemistry, cement production, and concrete design.

Civil Engineering Materials

Civil Engineering Materials PDF Author: Qiang Yuan
Publisher: Elsevier
ISBN: 0128230770
Category : Technology & Engineering
Languages : en
Pages : 400

Book Description
Civil Engineering Materials: From Theory to Practice presents the state-of-the-art in civil engineering materials, including the fundamental theory of materials needed for civil engineering projects and unique insights from decades of large-scale construction in China. The title includes the latest advances in new materials and techniques for civil engineering, showing the relationship between composition, structure and properties, and covering ultra-high-performance concrete and self-compacting concrete developed in China. This book provides comprehensive coverage of the most commonly used, most advanced materials for use in civil engineering. This volume consists of eight chapters covering the fundamentals of materials, inorganic cementing materials, Portland cement concrete, bricks, blocks and building mortar, metal, wood, asphalt and polymers. Describes the most commonly used civil engineering materials and updates on advanced materials Presents advanced materials and their applications in civil engineering Looks at engineering problems pragmatically from both a materials and civil engineering perspective Gives knowledge and guidance rooted in decades of experience in Chinese civil engineering projects Contextualises knowledge of civil engineering materials in infrastructure construction, including high-speed rail

Pozzolanic and Cementitious Materials

Pozzolanic and Cementitious Materials PDF Author: V.M. Malhotra
Publisher: CRC Press
ISBN: 1482296764
Category : Architecture
Languages : en
Pages : 204

Book Description
This volume provides an overview of the mineral admixtures used in concrete, including silica fume, slag, rice-husk ash, fly ash and natural pozzolans. It also includes the mineral/chemical composition of the admixtures, their chemical reactions with cement and as a method of recycling.

Mineral Admixtures in Cement and Concrete

Mineral Admixtures in Cement and Concrete PDF Author: Jayant D. Bapat
Publisher: CRC Press
ISBN: 1439817928
Category : Technology & Engineering
Languages : en
Pages : 315

Book Description
Written to meet the requirements of engineers working in construction and concrete manufacturing, Mineral Admixtures in Cement and Concrete focuses on how to make more workable and durable concrete using mineral admixtures. In particular, it covers pulverized fuel ash (PFA), blast furnace slag (BFS), silica fume (SF), rice husk ash (RHA), and metakaolin (MK), as well as some new admixtures currently under investigation. For each mineral admixture, the book looks at manufacturing and processing, physical characteristics, chemical and mineralogical composition, quality control, and reported experiences. It also examines the provisions of national standards on the admixture’s addition to cement and concrete. References to microstructures and chemistry are kept to a minimum and only discussed to the extent necessary to help readers apply the admixtures in practice. The book also addresses hydration, presenting the relevant chemistry and detailing the impact of adding mineral admixtures to concrete. A chapter on strength and durability explains the mechanisms, models, and standards related to concrete deterioration and how to mitigate carbonation, alkali-aggregate reactions, chloride attack and corrosion of reinforcement, external and internal sulphate attack, decalcification, and freeze-thaw action. This book is a useful reference for practicing engineers and students alike. It brings together, in one volume, information on the materials, hydration, and the strength and durability of cement and concrete with mineral admixtures. Offering a deeper understanding of mineral admixtures, it encourages engineers to more effectively use these and other wastes in cement and concrete to support more sustainable growth of the cement and construction industry.

Calcined Clays for Sustainable Concrete

Calcined Clays for Sustainable Concrete PDF Author: Karen Scrivener
Publisher: Springer
ISBN: 9401799393
Category : Technology & Engineering
Languages : en
Pages : 552

Book Description
This volume focuses on research and practical issues linked to Calcined Clays for Sustainable Concrete. The main subjects are geology of clays, hydration and performance of blended system with calcined clays, alkali activated binders, economic and environmental impacts of the use of calcined clays in cement based materials. Topics addressed in this book include the influence of processing on reactivity of calcined clays, influence of clay mineralogy on reactivity, geology of clay deposits, Portland-calcined clay systems, hydration, durability, performance, Portland-calcined clay-limestone systems, hydration, durability, performance, calcined clay-alkali systems, life cycle analysis, economics and environmental impact of use of calcined clays in cement and concrete and field applications. This book compiles the different contributions of the 1st International Conference on Calcined Clays for Sustainable Concrete, which took place in Lausanne, Switzerland, June, 23-25, 2015.The papers present the latest research in their field. It contains nearly 80 papers and abstracts. Overall, this work gives a broad view of research on calcined clays in the field of construction and will stimulate further research into calcined clays for sustainable concrete.

Eco-efficient concrete

Eco-efficient concrete PDF Author: M.I. Sánchez de Rojas Gómez
Publisher: Elsevier Inc. Chapters
ISBN: 012808894X
Category : Technology & Engineering
Languages : en
Pages : 30

Book Description
This chapter discusses the major natural pozzolans, along with the technical, economic and environmental advantages of using such materials in cement manufacture. The characterisation, pozzolanic properties, reaction kinetics and mechanical strength of pozzolans of different origins are described. The use of new pozzolans obtained from fired clay waste, which can be classified as a natural calcined pozzolan, is also addressed.

Development and Characterization of Sustainable Self-Consolidating Concrete Containing High Volume of Limestone Powder and Natural Or Calcined Pozzolanic Materials

Development and Characterization of Sustainable Self-Consolidating Concrete Containing High Volume of Limestone Powder and Natural Or Calcined Pozzolanic Materials PDF Author: Kemal Celik
Publisher:
ISBN:
Category :
Languages : en
Pages : 138

Book Description
Carbon dioxide emission from ordinary Portland cement manufacturing is one of the major sustainability issues facing the concrete industry. In fact, the annual worldwide CO2 emission from cement manufacturing is nearly 7% of the global emissions. Roughly 60% of these emissions come from the calcination of limestone, the main raw material for making Portland-cement clinker. The remaining CO2 emission is as a result of fuel combustion required to generate the heat necessary for the reactions forming clinker. Although considerable gains in energy efficiency have been achieved during the production of cement for the last two decades, calcination of limestone is the major concern as a source of CO2 emissions. Utilization of high-volume of by-products or natural pozzolanic material, such as basaltic ash pozzolan or fly ash as a replacement of Portland cement clinker, is a possible approach to reduce the clinker factor of Portland cement. In addition, self-consolidating concrete mixtures are being increasingly used for the construction of highly reinforced complex concrete elements and for massive concrete structures such as thick foundation due to its technical advantages such as shortened placement time, labor savings, improved compaction, and better encapsulation of rebar. Self-consolidating concrete requires utilization of high dosage of a plasticizing agent or viscosity-modifying chemical admixtures. The purpose of this study is to develop highly flowable self-consolidating concrete mixtures made of high proportions of cement replacement materials such as basaltic ash pozzolan, fly ash and pulverized limestone instead of high dosage of a plasticizer or viscosity-modifying admixtures, and characterize the effects of Portland cement replacement on the strength and durability. The two replacement materials used are high-volume finely-ground basaltic ash, a Saudi Arabian aluminum-silica rich basaltic glass and high-volume Class-F fly ash, from Jim Bridger Power Plant, Wyoming US. As an extension of the study, limestone powder was also used to replace Portland cement, alongside finely-ground basaltic ash and Class-F fly ash, forming ternary blends. Along with compressive strength tests, non-steady state chloride migration, water absorption and gas permeability tests were performed, as durability indicators, on self-consolidating concrete (SCC) specimens. The results were compared to two reference concretes; 100% ordinary Portland cement and 85% ordinary Portland cement - 15% limestone powder by weight. The high-volume of basaltic pozzolan and fly ash concrete mixtures showed strength and durability results comparable to those of the reference concretes at later ages; identifying that both can effectively be used to produce low-cost and environment-friendly self-consolidating concrete without utilizing viscosity-modifying admixture. Even though the slump flow diameter of SCC specimens was held in the similar range by utilizing varied amount of water reducer admixture, they were not identical. To enable a precise comparison among the specimens, the mortar specimens were produced that had same cement-replacement ratios with the ones in SCC specimens utilizing basaltic ash pozzolan (NP), Class-F fly ash (FA) and limestone powder without using water reducer admixture. Overall the binary and ternary FA samples had higher strength than NP mortar samples up to 1 year. This can be attributed to the higher pozzolanic reactivity of FA compared to NP which is supported by X-ray diffraction, isothermal calorimetry and thermogravimetric analysis. The normal consistency and setting time of the mixtures were determined. It showed that cement replacement with limestone powder in the ternary blended cements containing either basaltic ash pozzolan or Class-F fly ash along with ordinary Portland cement lowered the initial and final time of setting relative to the binary blended cements containing similar ratio of cement replacement. Also, the water demand of mixtures incorporate with basaltic ash pozzolan was greater than the one with Class-F fly ash. The influence of the basaltic ash pozzolan, Class-F fly ash and limestone powder in the binary and ternary Portland cement blends is discussed, while following the physicochemical changes such as crystalline transition, hydration kinetics, and mechanical property that are a direct result of the addition of supplementary cementitious material or filler. Selected cement pastes were characterized by X-ray diffraction (XRD), petrographic microscopy and scanning electron microscopy with energy dispersive spectroscopy, isothermal calorimetry and thermogravimetric analysis (TGA). Integrating these techniques helps to understand the fresh and hardened properties of concretes and brings new insight into the effect of basaltic ash pozzolan, Class-F fly ash and limestone powder on the hydration of Portland cement. Isothermal calorimetry analysis presents that the addition of limestone powder, for instance, increased the rate of hydration reaction relative to the control specimen. This suggests that as a result of the further participation of aluminate phases in hydration reaction, the hydration products were improved. This outcome was confirmed with the analysis of XRD results by the finding carboaluminates in the limestone powder containing blended cements. It is important to note that the enhancement of hydration reaction was not adequate to compensate for the dilution effect due to addition of limestone powder. While the replacement of ordinary Portland cement with Class-F fly ash retarded the rate of hydration reaction relative to the one with basaltic ash pozzolan at first, the reactivity of Class-F fly ash improved after 2 days of hydration and surpassed the cumulative heat of hydration of basaltic ash pozzolan. This result is supported by TGA analysis demonstrating that the mixtures containing Class-F fly ash had more hydrate water with respect to the one of with basaltic ash pozzolan. XRD analysis showed that the addition of limestone powder in the ternary cement containing either basaltic ash pozzolan or fly ash led to stabilize the transformation of ettringite to monosulfate and introduce the carboaluminates in the hydration products. TGA analysis indicated that the degree of pozzolanic reaction of fly ash was higher than the one with basaltic ash in the binary and ternary blended mixtures. For a comprehensive analysis and quantification of emissions and global warming potential (GWP) from concrete production, life-cycle assessment was used on the concrete mixture containing Class-F fly ash. It is found that high volume, up to 55% by weight replacement of ordinary Portland cement with Class-F fly ash, or Class-F fly ash and limestone powder produces highly workable concrete that has high 28-day and 365-day strength, and extremely high to very high resistance to chloride penetration along with low GWP for concrete production.