Mathematical Theory of Compressible Viscous Fluids PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Theory of Compressible Viscous Fluids PDF full book. Access full book title Mathematical Theory of Compressible Viscous Fluids by Eduard Feireisl. Download full books in PDF and EPUB format.

Mathematical Theory of Compressible Viscous Fluids

Mathematical Theory of Compressible Viscous Fluids PDF Author: Eduard Feireisl
Publisher: Birkhäuser
ISBN: 3319448358
Category : Mathematics
Languages : en
Pages : 189

Book Description
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematics. It will help graduate students and researchers to not only better understand problems in mathematical compressible fluid mechanics but also to learn something from the field of mathematical and numerical analysis and to see the connections between the two worlds. Potential readers should possess a good command of the basic tools of functional analysis and partial differential equations including the function spaces of Sobolev type.

Mathematical Theory of Compressible Viscous Fluids

Mathematical Theory of Compressible Viscous Fluids PDF Author: Eduard Feireisl
Publisher: Birkhäuser
ISBN: 3319448358
Category : Mathematics
Languages : en
Pages : 189

Book Description
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematics. It will help graduate students and researchers to not only better understand problems in mathematical compressible fluid mechanics but also to learn something from the field of mathematical and numerical analysis and to see the connections between the two worlds. Potential readers should possess a good command of the basic tools of functional analysis and partial differential equations including the function spaces of Sobolev type.

Dynamics of Viscous Compressible Fluids

Dynamics of Viscous Compressible Fluids PDF Author: Eduard Feireisl
Publisher: Oxford University Press
ISBN: 9780198528388
Category : Language Arts & Disciplines
Languages : en
Pages : 228

Book Description
This text develops the ideas and concepts of the mathematical theory of viscous, compressible and heat conducting fluids. The material is by no means intended to be the last word on the subject but rather to indicate possible directions of future research.

Introduction to the Numerical Analysis of Incompressible Viscous Flows

Introduction to the Numerical Analysis of Incompressible Viscous Flows PDF Author: William Layton
Publisher: SIAM
ISBN: 0898718902
Category : Mathematics
Languages : en
Pages : 220

Book Description
Introduction to the Numerical Analysis of Incompressible Viscous Flows treats the numerical analysis of finite element computational fluid dynamics. Assuming minimal background, the text covers finite element methods; the derivation, behavior, analysis, and numerical analysis of Navier-Stokes equations; and turbulence and turbulence models used in simulations. Each chapter on theory is followed by a numerical analysis chapter that expands on the theory. This book provides the foundation for understanding the interconnection of the physics, mathematics, and numerics of the incompressible case, which is essential for progressing to the more complex flows not addressed in this book (e.g., viscoelasticity, plasmas, compressible flows, coating flows, flows of mixtures of fluids, and bubbly flows). With mathematical rigor and physical clarity, the book progresses from the mathematical preliminaries of energy and stress to finite element computational fluid dynamics in a format manageable in one semester. Audience: this unified treatment of fluid mechanics, analysis, and numerical analysis is intended for graduate students in mathematics, engineering, physics, and the sciences who are interested in understanding the foundations of methods commonly used for flow simulations.

Theory and Applications of Viscous Fluid Flows

Theory and Applications of Viscous Fluid Flows PDF Author: Radyadour Kh. Zeytounian
Publisher: Springer Science & Business Media
ISBN: 3662104474
Category : Science
Languages : en
Pages : 498

Book Description
This book closes the gap between standard undergraduate texts on fluid mechanics and monographical publications devoted to specific aspects of viscous fluid flows. Each chapter serves as an introduction to a special topic that will facilitate later application by readers in their research work.

Compressible Navier-Stokes Equations

Compressible Navier-Stokes Equations PDF Author: Pavel Plotnikov
Publisher: Springer Science & Business Media
ISBN: 3034803672
Category : Mathematics
Languages : en
Pages : 470

Book Description
The book presents the modern state of the art in the mathematical theory of compressible Navier-Stokes equations, with particular emphasis on the applications to aerodynamics. The topics covered include: modeling of compressible viscous flows; modern mathematical theory of nonhomogeneous boundary value problems for viscous gas dynamics equations; applications to optimal shape design in aerodynamics; kinetic theory for equations with oscillating data; new approach to the boundary value problems for transport equations. The monograph offers a comprehensive and self-contained introduction to recent mathematical tools designed to handle the problems arising in the theory.

Singular Limits in Thermodynamics of Viscous Fluids

Singular Limits in Thermodynamics of Viscous Fluids PDF Author: Eduard Feireisl
Publisher: Springer Science & Business Media
ISBN: 3764388439
Category : Science
Languages : en
Pages : 411

Book Description
Many interesting problems in mathematical fluid dynamics involve the behavior of solutions of nonlinear systems of partial differential equations as certain parameters vanish or become infinite. Frequently the limiting solution, provided the limit exists, satisfies a qualitatively different system of differential equations. This book is designed as an introduction to the problems involving singular limits based on the concept of weak or variational solutions. The primitive system consists of a complete system of partial differential equations describing the time evolution of the three basic state variables: the density, the velocity, and the absolute temperature associated to a fluid, which is supposed to be compressible, viscous, and heat conducting. It can be represented by the Navier-Stokes-Fourier-system that combines Newton's rheological law for the viscous stress and Fourier's law of heat conduction for the internal energy flux. As a summary, this book studies singular limits of weak solutions to the system governing the flow of thermally conducting compressible viscous fluids.

Physics of Continuous Matter, Second Edition

Physics of Continuous Matter, Second Edition PDF Author: B. Lautrup
Publisher: CRC Press
ISBN: 1420077007
Category : Science
Languages : en
Pages : 698

Book Description
Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World, Second Edition provides an introduction to the basic ideas of continuum physics and their application to a wealth of macroscopic phenomena. The text focuses on the many approximate methods that offer insight into the rich physics hidden in fundamental continuum mechanics equations. Like its acclaimed predecessor, this second edition introduces mathematical tools on a "need-to-know" basis. New to the Second Edition This edition includes three new chapters on elasticity of slender rods, energy, and entropy. It also offers more margin drawings and photographs and improved images of simulations. Along with reorganizing much of the material, the author has revised many of the physics arguments and mathematical presentations to improve clarity and consistency. The collection of problems at the end of each chapter has been expanded as well. These problems further develop the physical and mathematical concepts presented. With worked examples throughout, this book clearly illustrates both qualitative and quantitative physics reasoning. It emphasizes the importance in understanding the physical principles behind equations and the conditions underlying approximations. A companion website provides a host of ancillary materials, including software programs, color figures, and additional problems.

Unified Theoretical Foundations of Lift and Drag in Viscous and Compressible External Flows

Unified Theoretical Foundations of Lift and Drag in Viscous and Compressible External Flows PDF Author: Luo-Qin Liu
Publisher: Springer
ISBN: 9811062234
Category : Technology & Engineering
Languages : en
Pages : 168

Book Description
This thesis analyzes aerodynamic forces in viscous and compressible external flows. It is unique, as the force theories discussed apply to fully viscous and compressible Navier-Stokes external flows, allowing them to be readily combined with computational fluid dynamics to form a profound basis of modern aerodynamics. This thesis makes three fundamental contributions to theoretical aerodynamics, presenting: (1) a universal far-field zonal structure that determines how disturbance flow quantities decay dynamically to the state of rest at infinity; (2) a universal and exact total-force formula for steady flow and its far-field asymptotics; and (3) a general near-field theory for the detailed diagnosis of all physical constituents of aerodynamic force and moment.

Navier-Stokes Equations

Navier-Stokes Equations PDF Author: Roger Temam
Publisher: American Mathematical Soc.
ISBN: 0821827375
Category : Mathematics
Languages : en
Pages : 426

Book Description
Originally published in 1977, the book is devoted to the theory and numerical analysis of the Navier-Stokes equations for viscous incompressible fluid. On the theoretical side, results related to the existence, the uniqueness, and, in some cases, the regularity of solutions are presented. On the numerical side, various approaches to the approximation of Navier-Stokes problems by discretization are considered, such as the finite dereference method, the finite element method, and the fractional steps method. The problems of stability and convergence for numerical methods are treated as completely as possible. The new material in the present book (as compared to the preceding 1984 edition) is an appendix reproducing a survey article written in 1998. This appendix touches upon a few aspects not addressed in the earlier editions, in particular a short derivation of the Navier-Stokes equations from the basic conservation principles in continuum mechanics, further historical perspectives, and indications on new developments in the area. The appendix also surveys some aspects of the related Euler equations and the compressible Navier-Stokes equations. The book is written in the style of a textbook and the author has attempted to make the treatment self-contained. It can be used as a textbook or a reference book for researchers. Prerequisites for reading the book include some familiarity with the Navier-Stokes equations and some knowledge of functional analysis and Sololev spaces.

Nonlinear Wave Equations Perturbed by Viscous Terms

Nonlinear Wave Equations Perturbed by Viscous Terms PDF Author: Petr P. Mosolov
Publisher: Walter de Gruyter
ISBN: 3110811901
Category : Mathematics
Languages : en
Pages : 341

Book Description
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)