Author: International Astronomical Union. Colloquium
Publisher: Cambridge University Press
ISBN: 9780521849081
Category : Science
Languages : en
Pages : 586
Book Description
This book contains the proceedings of the International Astronomical Union Colloquium no. 195, held in Torino, Italy in 2004. The meeting investigated the formation of galaxies within a full cosmological context, focusing on the outer regions of galaxy clusters. The observed correlation of optical and radio properties of galaxies with their environment indicates that the formation and evolution of galaxies is intimately linked to the formation of large scale structure. With chapters written by leading authorities in the field, this timely volume investigates the role of the environment in determining the properties of galaxies. It describes the distribution of matter and galaxies on the largest scales in the Universe, the processes of cluster and galaxy formation, their role and interplay. This is a valuable collection of review articles for professional astronomers.
Outskirts of Galaxy Clusters (IAU C195)
International Aerospace Abstracts
X-Ray Emission from Clusters of Galaxies
Author: Craig L. Sarazin
Publisher: Cambridge University Press
ISBN: 9780521329576
Category : Science
Languages : en
Pages : 0
Book Description
First published in 1988, this book is a comprehensive survey of the astrophysical characteristics of the hot gas which pervades clusters of galaxies. In our universe, clusters of galaxies are the largest organised structures. Typically they comprise hundreds of galaxies moving through a region of space ten million light years in diameter. The volume between the galaxies is filled with gas having a temperature of 100 million degrees. This material is a strong source of cosmic X-rays. Dr Sarazin describes the theoretical description of the origin, dynamics, and physical state of the cluster gas. Observations by radio and optical telescopes are also summarised. This account is addressed to professional astronomers and to graduate students. It is an exhaustive summary of a rapidly expanding field of research in modern astrophysics.
Publisher: Cambridge University Press
ISBN: 9780521329576
Category : Science
Languages : en
Pages : 0
Book Description
First published in 1988, this book is a comprehensive survey of the astrophysical characteristics of the hot gas which pervades clusters of galaxies. In our universe, clusters of galaxies are the largest organised structures. Typically they comprise hundreds of galaxies moving through a region of space ten million light years in diameter. The volume between the galaxies is filled with gas having a temperature of 100 million degrees. This material is a strong source of cosmic X-rays. Dr Sarazin describes the theoretical description of the origin, dynamics, and physical state of the cluster gas. Observations by radio and optical telescopes are also summarised. This account is addressed to professional astronomers and to graduate students. It is an exhaustive summary of a rapidly expanding field of research in modern astrophysics.
Magnetic Fields in Galaxy Clusters
Author: Aurora Simionescu
Publisher: GRIN Verlag
ISBN: 3638068919
Category : Science
Languages : en
Pages : 40
Book Description
Bachelor Thesis from the year 2005 in the subject Astronomy, grade: 1,0, University of Bremen, language: English, abstract: An adaptive mesh refinement simulation of galaxy cluster formation was performed that included the passive evolution of a magnetic field. It was found that structure formation plays an important role in amplifying large-scale magnetic fields and that the magnetic properties of the obtained cluster were in good agreement with recent observations. The initial field was amplified by a factor of up to 1000 during the formation of the cluster, and the field strength was seen to be well correlated with the gas density. We further found a magnetic energy power spectrum that is well described by -5/3 Kolmogorov-type turbulence. Near the accretion shocks on the outskirts of the cluster, the magnetic field is amplified well beyond the value expected from mere compression of gas. Here, shear flows lead to a substantial increase in field strength. Realistic Faraday rotation measures were obtained from the simulation data, which was however not resolved well-enough to allow for a more quantitative analysis.
Publisher: GRIN Verlag
ISBN: 3638068919
Category : Science
Languages : en
Pages : 40
Book Description
Bachelor Thesis from the year 2005 in the subject Astronomy, grade: 1,0, University of Bremen, language: English, abstract: An adaptive mesh refinement simulation of galaxy cluster formation was performed that included the passive evolution of a magnetic field. It was found that structure formation plays an important role in amplifying large-scale magnetic fields and that the magnetic properties of the obtained cluster were in good agreement with recent observations. The initial field was amplified by a factor of up to 1000 during the formation of the cluster, and the field strength was seen to be well correlated with the gas density. We further found a magnetic energy power spectrum that is well described by -5/3 Kolmogorov-type turbulence. Near the accretion shocks on the outskirts of the cluster, the magnetic field is amplified well beyond the value expected from mere compression of gas. Here, shear flows lead to a substantial increase in field strength. Realistic Faraday rotation measures were obtained from the simulation data, which was however not resolved well-enough to allow for a more quantitative analysis.
Unveiling Galaxies
Author: Jean-René Roy
Publisher: Cambridge University Press
ISBN: 1108417019
Category : Nature
Languages : en
Pages : 311
Book Description
A thought provoking study of the powerful impact of images in guiding astronomers' understanding of galaxies through time.
Publisher: Cambridge University Press
ISBN: 1108417019
Category : Nature
Languages : en
Pages : 311
Book Description
A thought provoking study of the powerful impact of images in guiding astronomers' understanding of galaxies through time.
Clusters of Galaxies: Physics and Cosmology
Author: Andrei M. Bykov
Publisher: Springer
ISBN: 9789402417364
Category : Science
Languages : en
Pages : 535
Book Description
Clusters of galaxies are large assemblies of galaxies, hot gas and dark matter bound together by gravity. Galaxy clusters are now one of the most important cosmological probes to test the standard cosmological models. Constraints on the Dark Energy equation of state from the cluster number density measurements, deviations from the Gaussian perturbation models, the Sunyaev-Zeldovich effect as well as the dark matter proles are among the issues to be studied with clusters. The baryonic composition of clusters is dominated by hot gas that is in quasi-hydrostatic equilibrium within the dark matter-dominated gravitational potential well of the cluster. The hot gas is visible through spatially extended thermal X-ray emission, and it has been studied extensively both for assessing its physical properties and as a tracer of the large-scale structure of the Universe. Magnetic fields as well as a number of non-thermal plasma processes play a role in clusters of galaxies as we observe from radioastronomical observations. The goal of this volume is to review these processes and to investigate how they are interlinked. Overall, these papers provide a timely and comprehensive review of the multi-wavelength observations and theoretical understanding of clusters of galaxies in the cosmological context. Thus, the volume will be particularly useful to postgraduate students and researchers active in various areas of astrophysics and space science. Originally published in Space Science Reviews in the Topical Collection "Clusters of Galaxies: Physics and Cosmology"
Publisher: Springer
ISBN: 9789402417364
Category : Science
Languages : en
Pages : 535
Book Description
Clusters of galaxies are large assemblies of galaxies, hot gas and dark matter bound together by gravity. Galaxy clusters are now one of the most important cosmological probes to test the standard cosmological models. Constraints on the Dark Energy equation of state from the cluster number density measurements, deviations from the Gaussian perturbation models, the Sunyaev-Zeldovich effect as well as the dark matter proles are among the issues to be studied with clusters. The baryonic composition of clusters is dominated by hot gas that is in quasi-hydrostatic equilibrium within the dark matter-dominated gravitational potential well of the cluster. The hot gas is visible through spatially extended thermal X-ray emission, and it has been studied extensively both for assessing its physical properties and as a tracer of the large-scale structure of the Universe. Magnetic fields as well as a number of non-thermal plasma processes play a role in clusters of galaxies as we observe from radioastronomical observations. The goal of this volume is to review these processes and to investigate how they are interlinked. Overall, these papers provide a timely and comprehensive review of the multi-wavelength observations and theoretical understanding of clusters of galaxies in the cosmological context. Thus, the volume will be particularly useful to postgraduate students and researchers active in various areas of astrophysics and space science. Originally published in Space Science Reviews in the Topical Collection "Clusters of Galaxies: Physics and Cosmology"
Merging Processes in Galaxy Clusters
Author: L. Feretti
Publisher: Springer Science & Business Media
ISBN: 0306480964
Category : Science
Languages : en
Pages : 329
Book Description
Mergers are the mechanisms by which galaxy clusters are assembled through the hierarchical growth of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. Many of the observed properties of clusters depend on the physics of the merging process. These include substructure, shock, intra cluster plasma temperature and entropy structure, mixing of heavy elements within the intra cluster medium, acceleration of high-energy particles, formation of radio halos and the effects on the galaxy radio emission. This book reviews our current understanding of cluster merging from an observational and theoretical perspective, and is appropriate for both graduate students and researchers in the field.
Publisher: Springer Science & Business Media
ISBN: 0306480964
Category : Science
Languages : en
Pages : 329
Book Description
Mergers are the mechanisms by which galaxy clusters are assembled through the hierarchical growth of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. Many of the observed properties of clusters depend on the physics of the merging process. These include substructure, shock, intra cluster plasma temperature and entropy structure, mixing of heavy elements within the intra cluster medium, acceleration of high-energy particles, formation of radio halos and the effects on the galaxy radio emission. This book reviews our current understanding of cluster merging from an observational and theoretical perspective, and is appropriate for both graduate students and researchers in the field.
Globular Cluster Systems
Author: Keith M. Ashman
Publisher: Cambridge University Press
ISBN: 9780521087834
Category : Science
Languages : en
Pages : 184
Book Description
Globular clusters are roughly spherical, densely packed groups of stars found around galaxies. Most globular clusters probably formed at the same time as their host galaxies. Therefore they provide a unique fossil record of the conditions during the formation and early evolution of galaxies. This volume presents a comprehensive review of globular cluster systems. It summarizes their observed properties and shows how these constrain models of the structure of stars, the formation and evolution of galaxies and globular clusters, and the age of the Universe. For graduate students and researchers, this timely volume provides the definitive reference on globular cluster systems.
Publisher: Cambridge University Press
ISBN: 9780521087834
Category : Science
Languages : en
Pages : 184
Book Description
Globular clusters are roughly spherical, densely packed groups of stars found around galaxies. Most globular clusters probably formed at the same time as their host galaxies. Therefore they provide a unique fossil record of the conditions during the formation and early evolution of galaxies. This volume presents a comprehensive review of globular cluster systems. It summarizes their observed properties and shows how these constrain models of the structure of stars, the formation and evolution of galaxies and globular clusters, and the age of the Universe. For graduate students and researchers, this timely volume provides the definitive reference on globular cluster systems.
Cosmic Magnetic Fields
Author: Richard Wielebinski
Publisher: Springer Science & Business Media
ISBN: 9783540241751
Category : Science
Languages : en
Pages : 306
Book Description
While magnetic fields permeate the universe on all scales, the present book is dedicated to their investigation on the largest scales and affords a balanced account of both theoretical and observational aspects. Written as a set of advanced lectures and tutorial reviews that lead up to the forefront of research, this book offers both a modern source of reference for the experienced researchers as well as a high-level introductory text for postgraduate students and nonspecialist researchers working in related areas.
Publisher: Springer Science & Business Media
ISBN: 9783540241751
Category : Science
Languages : en
Pages : 306
Book Description
While magnetic fields permeate the universe on all scales, the present book is dedicated to their investigation on the largest scales and affords a balanced account of both theoretical and observational aspects. Written as a set of advanced lectures and tutorial reviews that lead up to the forefront of research, this book offers both a modern source of reference for the experienced researchers as well as a high-level introductory text for postgraduate students and nonspecialist researchers working in related areas.
Precision Cosmology with Galaxy Cluster Surveys
Author: Hao-Yi Wu
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 234
Book Description
The acceleration of the universe, which is often attributed to "dark energy, " has posed one of the main challenges to fundamental physics. Galaxy clusters provide one of the most sensitive probes of dark energy because their abundance reflects the growth rate of large-scale structure and the expansion rate of the universe. Several large galaxy cluster surveys will soon provide tremendous statistical power to constrain the properties of dark energy; however, the constraining power of these surveys will be determined by how well systematic errors are controlled. Of these systematic errors, the dominant one comes from inferring cluster masses using observable signals of clusters, the so-called "observable--mass distribution." This thesis focuses on extracting dark energy information from forthcoming large galaxy cluster surveys, including how we maximize the cosmological information, how we control important systematics, and how precisely we need to calibrate theoretical models. We study how multi-wavelength follow-up observations can improve cluster mass calibration in optical surveys. We also investigate the impact of theoretical uncertainties in calibrating the spatial distributions of galaxy clusters on dark energy constraints. In addition, we explore how the formation history of galaxy clusters impacts the self-calibration of cluster mass. In addition, we use N-body simulations to develop a new statistical sample of cluster-size halos in order to further understand the observable--mass distribution. We study the completeness of subhalos in our cluster sample by comparing them with the satellite galaxies in the Sloan Digital Sky Survey. We also study how subhalo selections impact the inferred correlation between formation time and optical mass tracers, including cluster richness and velocity dispersion.
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 234
Book Description
The acceleration of the universe, which is often attributed to "dark energy, " has posed one of the main challenges to fundamental physics. Galaxy clusters provide one of the most sensitive probes of dark energy because their abundance reflects the growth rate of large-scale structure and the expansion rate of the universe. Several large galaxy cluster surveys will soon provide tremendous statistical power to constrain the properties of dark energy; however, the constraining power of these surveys will be determined by how well systematic errors are controlled. Of these systematic errors, the dominant one comes from inferring cluster masses using observable signals of clusters, the so-called "observable--mass distribution." This thesis focuses on extracting dark energy information from forthcoming large galaxy cluster surveys, including how we maximize the cosmological information, how we control important systematics, and how precisely we need to calibrate theoretical models. We study how multi-wavelength follow-up observations can improve cluster mass calibration in optical surveys. We also investigate the impact of theoretical uncertainties in calibrating the spatial distributions of galaxy clusters on dark energy constraints. In addition, we explore how the formation history of galaxy clusters impacts the self-calibration of cluster mass. In addition, we use N-body simulations to develop a new statistical sample of cluster-size halos in order to further understand the observable--mass distribution. We study the completeness of subhalos in our cluster sample by comparing them with the satellite galaxies in the Sloan Digital Sky Survey. We also study how subhalo selections impact the inferred correlation between formation time and optical mass tracers, including cluster richness and velocity dispersion.