Probability Measure on Groups VII PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Probability Measure on Groups VII PDF full book. Access full book title Probability Measure on Groups VII by H. Heyer. Download full books in PDF and EPUB format.

Probability Measure on Groups VII

Probability Measure on Groups VII PDF Author: H. Heyer
Publisher: Springer
ISBN: 3540388745
Category : Mathematics
Languages : en
Pages : 599

Book Description


Probability Measure on Groups VII

Probability Measure on Groups VII PDF Author: H. Heyer
Publisher: Springer
ISBN: 3540388745
Category : Mathematics
Languages : en
Pages : 599

Book Description


Probability Measures on Groups IX

Probability Measures on Groups IX PDF Author: Herbert Heyer
Publisher: Springer
ISBN: 3540462066
Category : Mathematics
Languages : en
Pages : 446

Book Description
The latest in this series of Oberwolfach conferences focussed on the interplay between structural probability theory and various other areas of pure and applied mathematics such as Tauberian theory, infinite-dimensional rotation groups, central limit theorems, harmonizable processes, and spherical data. Thus it was attended by mathematicians whose research interests range from number theory to quantum physics in conjunction with structural properties of probabilistic phenomena. This volume contains 5 survey articles submitted on special invitation and 25 original research papers.

Probability Measures on Groups VIII

Probability Measures on Groups VIII PDF Author: Herbert Heyer
Publisher: Springer
ISBN: 3540448527
Category : Mathematics
Languages : en
Pages : 397

Book Description


Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups

Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups PDF Author: Wilfried Hazod
Publisher: Springer Science & Business Media
ISBN: 940173061X
Category : Mathematics
Languages : en
Pages : 626

Book Description
Generalising classical concepts of probability theory, the investigation of operator (semi)-stable laws as possible limit distributions of operator-normalized sums of i.i.d. random variable on finite-dimensional vector space started in 1969. Currently, this theory is still in progress and promises interesting applications. Parallel to this, similar stability concepts for probabilities on groups were developed during recent decades. It turns out that the existence of suitable limit distributions has a strong impact on the structure of both the normalizing automorphisms and the underlying group. Indeed, investigations in limit laws led to contractable groups and - at least within the class of connected groups - to homogeneous groups, in particular to groups that are topologically isomorphic to a vector space. Moreover, it has been shown that (semi)-stable measures on groups have a vector space counterpart and vice versa. The purpose of this book is to describe the structure of limit laws and the limit behaviour of normalized i.i.d. random variables on groups and on finite-dimensional vector spaces from a common point of view. This will also shed a new light on the classical situation. Chapter 1 provides an introduction to stability problems on vector spaces. Chapter II is concerned with parallel investigations for homogeneous groups and in Chapter III the situation beyond homogeneous Lie groups is treated. Throughout, emphasis is laid on the description of features common to the group- and vector space situation. Chapter I can be understood by graduate students with some background knowledge in infinite divisibility. Readers of Chapters II and III are assumed to be familiar with basic techniques from probability theory on locally compact groups.

Probability Measures on Groups, VII

Probability Measures on Groups, VII PDF Author: Herbert Heyer
Publisher: Springer
ISBN:
Category : Group theory
Languages : en
Pages : 606

Book Description


Probability Measures on Semigroups

Probability Measures on Semigroups PDF Author: Göran Högnäs
Publisher: Springer Science & Business Media
ISBN: 038777548X
Category : Mathematics
Languages : en
Pages : 438

Book Description
This second edition presents up-to-date material on the theory of weak convergance of convolution products of probability measures in semigroups, the theory of random walks on semigroups, and their applications to products of random matrices. In addition, this unique work examines the essentials of abstract semigroup theory and its application to concrete semigroups of matrices. This substantially revised text includes exercises at various levels at the end of each section and includes the best available proofs on the most important theorems used in a book, making it suitable for a one semester course on semigroups. In addition, it could also be used as a main text or supplementary material for courses focusing on probability on algebraic structures or weak convergance. This book is ideally suited to graduate students in mathematics, and students in other fields, such as engineering and the sciences with an interest in probability. Students in statistics using advanced probability will also find this book useful.

Probability Measures on Groups

Probability Measures on Groups PDF Author: H. Heyer
Publisher: Springer
ISBN: 3540354069
Category : Mathematics
Languages : en
Pages : 366

Book Description


Harmonic Analysis of Probability Measures on Hypergroups

Harmonic Analysis of Probability Measures on Hypergroups PDF Author: Walter R. Bloom
Publisher: Walter de Gruyter
ISBN: 3110877597
Category : Mathematics
Languages : en
Pages : 609

Book Description
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.

Probabilities on the Heisenberg Group

Probabilities on the Heisenberg Group PDF Author: Daniel Neuenschwander
Publisher: Springer
ISBN: 3540685901
Category : Mathematics
Languages : en
Pages : 146

Book Description
The Heisenberg group comes from quantum mechanics and is the simplest non-commutative Lie group. While it belongs to the class of simply connected nilpotent Lie groups, it turns out that its special structure yields many results which (up to now) have not carried over to this larger class. This book is a survey of probabilistic results on the Heisenberg group. The emphasis lies on limit theorems and their relation to Brownian motion. Besides classical probability tools, non-commutative Fourier analysis and functional analysis (operator semigroups) comes in. The book is intended for probabilists and analysts interested in Lie groups, but given the many applications of the Heisenberg group, it will also be useful for theoretical phycisists specialized in quantum mechanics and for engineers.

Probability Measures on Semigroups: Convolution Products, Random Walks and Random Matrices

Probability Measures on Semigroups: Convolution Products, Random Walks and Random Matrices PDF Author: Göran Högnäs
Publisher: Springer Science & Business Media
ISBN: 1475723881
Category : Mathematics
Languages : en
Pages : 399

Book Description
A Scientific American article on chaos, see Crutchfield et al. (1986), illus trates a very persuasive example of recurrence. A painting of Henri Poincare, or rather a digitized version of it, is stretched and cut to produce a mildly distorted image of Poincare. The same procedure is applied to the distorted image and the process is repeated over and over again on the successively more and more blurred images. After a dozen repetitions nothing seems to be left of the original portrait. Miraculously, structured images appear briefly as we continue to apply the distortion procedure to successive images. After 241 iterations the original picture reappears, unchanged! Apparently the pixels of the Poincare portrait were moving about in accor dance with a strictly deterministic rule. More importantly, the set of all pixels, the whole portrait, was transformed by the distortion mechanism. In this exam ple the transformation seems to have been a reversible one since the original was faithfully recreated. It is not very farfetched to introduce a certain amount of randomness and irreversibility in the above example. Think of a random miscoloring of some pixels or of inadvertently giving a pixel the color of its neighbor. The methods in this book are geared towards being applicable to the asymp totics of such transformation processes. The transformations form a semigroup in a natural way; we want to investigate the long-term behavior of random elements of this semigroup.