Author: Yaoqi Zhou
Publisher: Humana
ISBN: 9781493964048
Category : Science
Languages : en
Pages : 0
Book Description
This thorough volume explores predicting one-dimensional functional properties, functional sites in particular, from protein sequences, an area which is getting more and more attention. Beginning with secondary structure prediction based on sequence only, the book continues by exploring secondary structure prediction based on evolution information, prediction of solvent accessible surface areas and backbone torsion angles, model building, global structural properties, functional properties, as well as visualizing interior and protruding regions in proteins. Written for the highly successful Methods in Molecular Biology series, the chapters include the kind of detail and implementation advice to ensure success in the laboratory. Practical and authoritative, Prediction of Protein Secondary Structure serves as a vital guide to numerous state-of-the-art techniques that are useful for computational and experimental biologists.
Prediction of Protein Secondary Structure
Author: Yaoqi Zhou
Publisher: Humana
ISBN: 9781493964048
Category : Science
Languages : en
Pages : 0
Book Description
This thorough volume explores predicting one-dimensional functional properties, functional sites in particular, from protein sequences, an area which is getting more and more attention. Beginning with secondary structure prediction based on sequence only, the book continues by exploring secondary structure prediction based on evolution information, prediction of solvent accessible surface areas and backbone torsion angles, model building, global structural properties, functional properties, as well as visualizing interior and protruding regions in proteins. Written for the highly successful Methods in Molecular Biology series, the chapters include the kind of detail and implementation advice to ensure success in the laboratory. Practical and authoritative, Prediction of Protein Secondary Structure serves as a vital guide to numerous state-of-the-art techniques that are useful for computational and experimental biologists.
Publisher: Humana
ISBN: 9781493964048
Category : Science
Languages : en
Pages : 0
Book Description
This thorough volume explores predicting one-dimensional functional properties, functional sites in particular, from protein sequences, an area which is getting more and more attention. Beginning with secondary structure prediction based on sequence only, the book continues by exploring secondary structure prediction based on evolution information, prediction of solvent accessible surface areas and backbone torsion angles, model building, global structural properties, functional properties, as well as visualizing interior and protruding regions in proteins. Written for the highly successful Methods in Molecular Biology series, the chapters include the kind of detail and implementation advice to ensure success in the laboratory. Practical and authoritative, Prediction of Protein Secondary Structure serves as a vital guide to numerous state-of-the-art techniques that are useful for computational and experimental biologists.
From Protein Structure to Function with Bioinformatics
Author: Daniel John Rigden
Publisher: Springer Science & Business Media
ISBN: 1402090587
Category : Science
Languages : en
Pages : 330
Book Description
Proteins lie at the heart of almost all biological processes and have an incredibly wide range of activities. Central to the function of all proteins is their ability to adopt, stably or sometimes transiently, structures that allow for interaction with other molecules. An understanding of the structure of a protein can therefore lead us to a much improved picture of its molecular function. This realisation has been a prime motivation of recent Structural Genomics projects, involving large-scale experimental determination of protein structures, often those of proteins about which little is known of function. These initiatives have, in turn, stimulated the massive development of novel methods for prediction of protein function from structure. Since model structures may also take advantage of new function prediction algorithms, the first part of the book deals with the various ways in which protein structures may be predicted or inferred, including specific treatment of membrane and intrinsically disordered proteins. A detailed consideration of current structure-based function prediction methodologies forms the second part of this book, which concludes with two chapters, focusing specifically on case studies, designed to illustrate the real-world application of these methods. With bang up-to-date texts from world experts, and abundant links to publicly available resources, this book will be invaluable to anyone who studies proteins and the endlessly fascinating relationship between their structure and function.
Publisher: Springer Science & Business Media
ISBN: 1402090587
Category : Science
Languages : en
Pages : 330
Book Description
Proteins lie at the heart of almost all biological processes and have an incredibly wide range of activities. Central to the function of all proteins is their ability to adopt, stably or sometimes transiently, structures that allow for interaction with other molecules. An understanding of the structure of a protein can therefore lead us to a much improved picture of its molecular function. This realisation has been a prime motivation of recent Structural Genomics projects, involving large-scale experimental determination of protein structures, often those of proteins about which little is known of function. These initiatives have, in turn, stimulated the massive development of novel methods for prediction of protein function from structure. Since model structures may also take advantage of new function prediction algorithms, the first part of the book deals with the various ways in which protein structures may be predicted or inferred, including specific treatment of membrane and intrinsically disordered proteins. A detailed consideration of current structure-based function prediction methodologies forms the second part of this book, which concludes with two chapters, focusing specifically on case studies, designed to illustrate the real-world application of these methods. With bang up-to-date texts from world experts, and abundant links to publicly available resources, this book will be invaluable to anyone who studies proteins and the endlessly fascinating relationship between their structure and function.
Introduction to Protein Structure Prediction
Author: Huzefa Rangwala
Publisher: John Wiley & Sons
ISBN: 111809946X
Category : Science
Languages : en
Pages : 611
Book Description
A look at the methods and algorithms used to predict protein structure A thorough knowledge of the function and structure of proteins is critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this reference sheds light on the methods used for protein structure prediction and reveals the key applications of modeled structures. This indispensable book covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, readers will find an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction and they will acquire unique insight into the future applications of the modeled protein structures. The book begins with a thorough introduction to the protein structure prediction problem and is divided into four themes: a background on structure prediction, the prediction of structural elements, tertiary structure prediction, and functional insights. Within those four sections, the following topics are covered: Databases and resources that are commonly used for protein structure prediction The structure prediction flagship assessment (CASP) and the protein structure initiative (PSI) Definitions of recurring substructures and the computational approaches used for solving sequence problems Difficulties with contact map prediction and how sophisticated machine learning methods can solve those problems Structure prediction methods that rely on homology modeling, threading, and fragment assembly Hybrid methods that achieve high-resolution protein structures Parts of the protein structure that may be conserved and used to interact with other biomolecules How the loop prediction problem can be used for refinement of the modeled structures The computational model that detects the differences between protein structure and its modeled mutant Whether working in the field of bioinformatics or molecular biology research or taking courses in protein modeling, readers will find the content in this book invaluable.
Publisher: John Wiley & Sons
ISBN: 111809946X
Category : Science
Languages : en
Pages : 611
Book Description
A look at the methods and algorithms used to predict protein structure A thorough knowledge of the function and structure of proteins is critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this reference sheds light on the methods used for protein structure prediction and reveals the key applications of modeled structures. This indispensable book covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, readers will find an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction and they will acquire unique insight into the future applications of the modeled protein structures. The book begins with a thorough introduction to the protein structure prediction problem and is divided into four themes: a background on structure prediction, the prediction of structural elements, tertiary structure prediction, and functional insights. Within those four sections, the following topics are covered: Databases and resources that are commonly used for protein structure prediction The structure prediction flagship assessment (CASP) and the protein structure initiative (PSI) Definitions of recurring substructures and the computational approaches used for solving sequence problems Difficulties with contact map prediction and how sophisticated machine learning methods can solve those problems Structure prediction methods that rely on homology modeling, threading, and fragment assembly Hybrid methods that achieve high-resolution protein structures Parts of the protein structure that may be conserved and used to interact with other biomolecules How the loop prediction problem can be used for refinement of the modeled structures The computational model that detects the differences between protein structure and its modeled mutant Whether working in the field of bioinformatics or molecular biology research or taking courses in protein modeling, readers will find the content in this book invaluable.
Machine Learning Meets Quantum Physics
Author: Kristof T. Schütt
Publisher: Springer Nature
ISBN: 3030402452
Category : Science
Languages : en
Pages : 473
Book Description
Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.
Publisher: Springer Nature
ISBN: 3030402452
Category : Science
Languages : en
Pages : 473
Book Description
Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.
Biological Sequence Analysis
Author: Richard Durbin
Publisher: Cambridge University Press
ISBN: 113945739X
Category : Science
Languages : en
Pages : 372
Book Description
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
Publisher: Cambridge University Press
ISBN: 113945739X
Category : Science
Languages : en
Pages : 372
Book Description
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
Computational Methods for Protein Structure Prediction and Modeling
Author: Ying Xu
Publisher: Springer Science & Business Media
ISBN: 0387688250
Category : Science
Languages : en
Pages : 335
Book Description
Volume Two of this two-volume sequence presents a comprehensive overview of protein structure prediction methods and includes protein threading, De novo methods, applications to membrane proteins and protein complexes, structure-based drug design, as well as structure prediction as a systems problem. A series of appendices review the biological and chemical basics related to protein structure, computer science for structural informatics, and prerequisite mathematics and statistics.
Publisher: Springer Science & Business Media
ISBN: 0387688250
Category : Science
Languages : en
Pages : 335
Book Description
Volume Two of this two-volume sequence presents a comprehensive overview of protein structure prediction methods and includes protein threading, De novo methods, applications to membrane proteins and protein complexes, structure-based drug design, as well as structure prediction as a systems problem. A series of appendices review the biological and chemical basics related to protein structure, computer science for structural informatics, and prerequisite mathematics and statistics.
Protein Folds
Author: Henrik Bohr
Publisher: CRC Press
ISBN: 9780849340093
Category : Medical
Languages : en
Pages : 352
Book Description
Written by outstanding scientists in physics and molecular biology, this book addresses the most recent advances in the analysis of the protein folding processes and protein structure determination. Emphasis is also placed on modelling and presentation of experimental results of structural membrane bound proteins. Many color plates help to illustrate structural aspects covered including: Defining folds of protein domains Structure determination from sequence Distance geometry Lattice theories Membrane proteins Protein-Ligand interaction Topological considerations Docking onto receptors All analysis is presented with proven theory and experimentation. Protein Folds: A Distance-Based Approach is an excellent text/reference for biotechnologists and biochemists as well as graduate students studying in the research sciences.
Publisher: CRC Press
ISBN: 9780849340093
Category : Medical
Languages : en
Pages : 352
Book Description
Written by outstanding scientists in physics and molecular biology, this book addresses the most recent advances in the analysis of the protein folding processes and protein structure determination. Emphasis is also placed on modelling and presentation of experimental results of structural membrane bound proteins. Many color plates help to illustrate structural aspects covered including: Defining folds of protein domains Structure determination from sequence Distance geometry Lattice theories Membrane proteins Protein-Ligand interaction Topological considerations Docking onto receptors All analysis is presented with proven theory and experimentation. Protein Folds: A Distance-Based Approach is an excellent text/reference for biotechnologists and biochemists as well as graduate students studying in the research sciences.
Protein Structure Prediction
Author: Mohammed Zaki
Publisher: Springer Science & Business Media
ISBN: 1588297527
Category : Science
Languages : en
Pages : 338
Book Description
This book covers elements of both the data-driven comparative modeling approach to structure prediction and also recent attempts to simulate folding using explicit or simplified models. Despite the unsolved mystery of how a protein folds, advances are being made in predicting the interactions of proteins with other molecules. Also rapidly advancing are the methods for solving the inverse folding problem, the problem of finding a sequence to fit a structure. This book focuses on the various computational methods for prediction, their successes and their limitations, from the perspective of their most well known practitioners.
Publisher: Springer Science & Business Media
ISBN: 1588297527
Category : Science
Languages : en
Pages : 338
Book Description
This book covers elements of both the data-driven comparative modeling approach to structure prediction and also recent attempts to simulate folding using explicit or simplified models. Despite the unsolved mystery of how a protein folds, advances are being made in predicting the interactions of proteins with other molecules. Also rapidly advancing are the methods for solving the inverse folding problem, the problem of finding a sequence to fit a structure. This book focuses on the various computational methods for prediction, their successes and their limitations, from the perspective of their most well known practitioners.
Of Urfs And Orfs
Author: Russell F. Doolittle
Publisher: University Science Books
ISBN: 9780935702545
Category : Science
Languages : en
Pages : 118
Book Description
In these days of facile cloning and rapid DNA sequencing, it is not uncommon for investigators to find themselves with a DNA sequence that may or may not code for a known gene product. The sequence is 'open' when read in an appropriate frame, which is to say that there is a long run of amino acid codons before the appearance of a terminator codon. How can we find out if this 'unidentified reading frame' (URF) really codes for a genuine protein, and how can we identify it if it exists? There are two general strategies, both of which can also be applied to the characterization of any 'open reading frame' (ORF), whether or not it has been 'identified'. The first and simplest approach involves computer searching and analysis; the second employs antibodies raised against synthetic peptides patterned on the sequence of the expected gene product. Both methods have been used with great success by many investigators. Each has, nonetheless, its pitfalls and frustrations. This primer is meant to guide the researcher past those obstacles as much as possible. Graduate students and researchers interested in amino acid sequencing; molecular biologists, biochemists, chemists, and biotechnologists.
Publisher: University Science Books
ISBN: 9780935702545
Category : Science
Languages : en
Pages : 118
Book Description
In these days of facile cloning and rapid DNA sequencing, it is not uncommon for investigators to find themselves with a DNA sequence that may or may not code for a known gene product. The sequence is 'open' when read in an appropriate frame, which is to say that there is a long run of amino acid codons before the appearance of a terminator codon. How can we find out if this 'unidentified reading frame' (URF) really codes for a genuine protein, and how can we identify it if it exists? There are two general strategies, both of which can also be applied to the characterization of any 'open reading frame' (ORF), whether or not it has been 'identified'. The first and simplest approach involves computer searching and analysis; the second employs antibodies raised against synthetic peptides patterned on the sequence of the expected gene product. Both methods have been used with great success by many investigators. Each has, nonetheless, its pitfalls and frustrations. This primer is meant to guide the researcher past those obstacles as much as possible. Graduate students and researchers interested in amino acid sequencing; molecular biologists, biochemists, chemists, and biotechnologists.
Multiscale Approaches to Protein Modeling
Author: Andrzej Kolinski
Publisher: Springer Science & Business Media
ISBN: 144196889X
Category : Science
Languages : en
Pages : 360
Book Description
The book gives a comprehensive review of the most advanced multiscale methods for protein structure prediction, computational studies of protein dynamics, folding mechanisms and macromolecular interactions. It approaches span a wide range of the levels of coarse-grained representations, various sampling techniques and variety of applications to biomedical and biophysical problems. This book is intended to be used as a reference book for those who are just beginning their adventure with biomacromolecular modeling but also as a valuable source of detailed information for those who are already experts in the field of biomacromolecular modeling and in related areas of computational biology or biophysics.
Publisher: Springer Science & Business Media
ISBN: 144196889X
Category : Science
Languages : en
Pages : 360
Book Description
The book gives a comprehensive review of the most advanced multiscale methods for protein structure prediction, computational studies of protein dynamics, folding mechanisms and macromolecular interactions. It approaches span a wide range of the levels of coarse-grained representations, various sampling techniques and variety of applications to biomedical and biophysical problems. This book is intended to be used as a reference book for those who are just beginning their adventure with biomacromolecular modeling but also as a valuable source of detailed information for those who are already experts in the field of biomacromolecular modeling and in related areas of computational biology or biophysics.