Predicting the Behavior of Horizontally Curved I-girders During Construction PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Predicting the Behavior of Horizontally Curved I-girders During Construction PDF full book. Access full book title Predicting the Behavior of Horizontally Curved I-girders During Construction by Jason Clarence Stith. Download full books in PDF and EPUB format.

Predicting the Behavior of Horizontally Curved I-girders During Construction

Predicting the Behavior of Horizontally Curved I-girders During Construction PDF Author: Jason Clarence Stith
Publisher:
ISBN:
Category :
Languages : en
Pages : 660

Book Description
The majority of a bridge designer's time is spent ensuring strength and serviceability limit states are satisfied for the completed structure under various dead and live loads. Anecdotally, the profession has done an admirable job designing safe bridges, but engineering the construction process by which bridges get built plays a lesser role in the design offices. The result of this oversight is the complete collapse of a few large bridges as well as numerous other serviceability failures during construction. According to the available literature there have been only a few attempts to monitor a full-scale bridge in the field during the entire construction process. Another challenge for engineers is the lack of analysis tools available which predict the behavior of the bridge during the intermediate construction phases. During construction, partial bracing is present and the boundary conditions can vary significantly from the final bridge configuration. The challenge is magnified for complex bridge geometries such as curved bridges or bridges with skewed supports. To address some of the concerns facing engineers a three span curved steel I-girder bridge was monitored throughout the entire construction process. Field studies collected data on the girder lifting behavior, partially constructed behavior, and concrete deck placement behavior. Additional analytical studies followed using the field measurements to verify the finite element models. Finally, conclusions drawn from the physical and analytical testing were utilized to derive equations that predicted behavior, and analysis tools were developed to provide engineers with solutions to a wide range of construction related problems. This dissertation describes the development of two design tools, UT Lift and UT Bridge. UT Lift is a macro-enabled Excel spreadsheet that predicts the behavior of curved I-girders during lifting. The derivation of the equations necessary to accomplish these calculations and the implementation are described in this dissertation. UT Bridge is a PC-based, user-friendly, 3-D finite element program for I-girder bridges. The basic design philosophy of UT Bridge aims to allow an engineer to take the information readily available in a set of bridge drawings and easily input the necessary information into the program. A straight or curved I-girder bridge with any number of girders or spans can then be analyzed with a robust finite element analysis for either the erection sequence or the concrete deck placement. The development of UT Bridge as well as the necessary element formulations is provided in this dissertation.

Predicting the Behavior of Horizontally Curved I-girders During Construction

Predicting the Behavior of Horizontally Curved I-girders During Construction PDF Author: Jason Clarence Stith
Publisher:
ISBN:
Category :
Languages : en
Pages : 660

Book Description
The majority of a bridge designer's time is spent ensuring strength and serviceability limit states are satisfied for the completed structure under various dead and live loads. Anecdotally, the profession has done an admirable job designing safe bridges, but engineering the construction process by which bridges get built plays a lesser role in the design offices. The result of this oversight is the complete collapse of a few large bridges as well as numerous other serviceability failures during construction. According to the available literature there have been only a few attempts to monitor a full-scale bridge in the field during the entire construction process. Another challenge for engineers is the lack of analysis tools available which predict the behavior of the bridge during the intermediate construction phases. During construction, partial bracing is present and the boundary conditions can vary significantly from the final bridge configuration. The challenge is magnified for complex bridge geometries such as curved bridges or bridges with skewed supports. To address some of the concerns facing engineers a three span curved steel I-girder bridge was monitored throughout the entire construction process. Field studies collected data on the girder lifting behavior, partially constructed behavior, and concrete deck placement behavior. Additional analytical studies followed using the field measurements to verify the finite element models. Finally, conclusions drawn from the physical and analytical testing were utilized to derive equations that predicted behavior, and analysis tools were developed to provide engineers with solutions to a wide range of construction related problems. This dissertation describes the development of two design tools, UT Lift and UT Bridge. UT Lift is a macro-enabled Excel spreadsheet that predicts the behavior of curved I-girders during lifting. The derivation of the equations necessary to accomplish these calculations and the implementation are described in this dissertation. UT Bridge is a PC-based, user-friendly, 3-D finite element program for I-girder bridges. The basic design philosophy of UT Bridge aims to allow an engineer to take the information readily available in a set of bridge drawings and easily input the necessary information into the program. A straight or curved I-girder bridge with any number of girders or spans can then be analyzed with a robust finite element analysis for either the erection sequence or the concrete deck placement. The development of UT Bridge as well as the necessary element formulations is provided in this dissertation.

Analysis and Design of Plated Structures

Analysis and Design of Plated Structures PDF Author: N.E. Shanmugam
Publisher: Woodhead Publishing
ISBN: 0128235713
Category : Technology & Engineering
Languages : en
Pages : 743

Book Description
Analysis and Design of Plated Structures: Stability, Second Edition covers the latest developments in new plate solutions and structural models for plate analysis. Completely revised and updated by its distinguished editors and international team of contributors, this edition also contains new chapters on GBT-based stability analysis and the finite strip and direct strength method (DSM). Other sections comprehensively cover bracing systems, storage tanks under wind loading, the analysis and design of light gauge steel members, applications of high strength steel members, cold-formed steel pallet racks, and the design of curved steel bridges. This is a comprehensive reference for graduate students, researchers and practicing engineers in the fields of civil, structural, aerospace, mechanical, automotive and marine engineering. - Features new chapters on the stability behavior of composite plates such as laminated composite, functionally graded, and steel concrete composite plate structures - Includes newly developed numerical simulation methods and new plate models - Provides generalized beam theory for analyzing thin-walled structures

Stability of Curved I-Girder Bridges During Construction

Stability of Curved I-Girder Bridges During Construction PDF Author: Mahendrakumar Madhavan
Publisher: LAP Lambert Academic Publishing
ISBN: 9783845404776
Category :
Languages : en
Pages : 476

Book Description
Curvature greatly complicates the behavior of horizontally curved steel plate girders used in bridge superstructures. The warping stress gradient across the width of I-girder flange plates reduces the vertical bending stress at which the flange plate buckles. The 2007 AASHTO Load and Resistance Factor Design Specifications eliminate the shortcomings of the 2003 AASHTO Guide Specifications for Horizontally Curved Bridges by unifying the flexural design of tangent and curved I-girder bridges. This book evaluates flange local buckling resistance based upon theoretical and analytical models that consider the effect of stress gradient across the flange coupled with the influence of rotational resistance provided by the web. The developed equations are verified using the finite element method, and the potential impact is demonstrated using the design example presented in the Guide Specifications.

Development of LRFD Specifications for Horizontally Curved Steel Girder Bridges

Development of LRFD Specifications for Horizontally Curved Steel Girder Bridges PDF Author: J. M. Kulicki
Publisher: Transportation Research Board
ISBN: 0309098556
Category : Bridges
Languages : en
Pages : 81

Book Description
This report contains the findings of research performed to develop design specifications for horizontally curved steel girder bridges.

On the Behavior of Horizontally Curved I-girder Webs Under Pure Bending

On the Behavior of Horizontally Curved I-girder Webs Under Pure Bending PDF Author: Scott Robert Ballance
Publisher:
ISBN:
Category : Girders
Languages : en
Pages : 170

Book Description


Improved Design Specifications for Horizontally Curved Steel Girder Highway Bridges

Improved Design Specifications for Horizontally Curved Steel Girder Highway Bridges PDF Author: Dann H. Hall
Publisher: Transportation Research Board
ISBN: 9780309063166
Category : Technology & Engineering
Languages : en
Pages : 140

Book Description


AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges, 2003

AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges, 2003 PDF Author: American Association of State Highway and Transportation Officials. Subcommittee on Bridges and Structures
Publisher: American Association of State Highway & Transportation Officials
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 422

Book Description


Field Monitoring of Curved Girder Bridges with Integral Abutments

Field Monitoring of Curved Girder Bridges with Integral Abutments PDF Author: Lowell Greimann
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 274

Book Description
"Nationally, there are questions regarding the design, fabrication, and erection of horizontally curved steel girder bridges due to unpredicted girder displacements, fit-up, and locked-in stresses. One reason for the concerns is that up to one-quarter of steel girder bridges are being designed with horizontal curvature. There is also an urgent need to reduce bridge maintenance costs by eliminating or reducing deck joints, which can be achieved by expanding the use of integral abutments to include curved girder bridges. However, the behavior of horizontally curved bridges with integral abutments during thermal loading is not well known nor understood. The purpose of this study was to investigate the behavior of horizontal curved bridges with integral abutment (IAB) and semi-integral abutment bridges (SIAB) with a specific interest in the response to changing temperatures. The long-term objective of this effort is to establish guidelines for the use of integral abutments with curved girder bridges. The primary objective of this work was to monitor and evaluate the behavior of six in-service, horizontally curved, steel-girder bridges with integral and semi-integral abutments. In addition, the influence of bridge curvature, skew and pier bearing (expansion and fixed) were also part of the study. Two monitoring systems were designed and applied to a set of four horizontally curved bridges and two straight bridges at the northeast corner of Des Moines, Iowa -- one system for measuring strains and movement under long term thermal changes and one system for measuring the behavior under short term, controlled live loading. A finite element model was developed and validated against the measured strains. The model was then used to investigate the sensitivity of design calculations to curvature, skew and pier joint conditions. The general conclusions were as follows: (1) There were no measurable differences in the behavior of the horizontally curved bridges and straight bridges studied in this work under thermal effects. For preliminary member sizing of curved bridges, thermal stresses and movements in a straight bridge of the same length are a reasonable first approximation. (2) Thermal strains in integral abutment and semi-integral abutment bridges were not noticeably different. The choice between IAB and SIAB should be based on life-cycle costs (e.g., construction and maintenance). (3) An expansion bearing pier reduces the thermal stresses in the girders of the straight bridge but does not appear to reduce the stresses in the girders of the curved bridge. (4) An analysis of the bridges predicted a substantial total stress (sum of the vertical bending stress, the lateral bending stress, and the axial stress) up to 3 ksi due to temperature effects. (5) For the one curved integral abutment bridge studied at length, the stresses in the girders significantly vary with changes in skew and curvature. With a 10° skew and 0.06 radians arc span length to radius ratio, the curved and skew integral abutment bridges can be designed as a straight bridge if an error in estimation of the stresses of 10% is acceptable." -- Technical Report Documentation Page.

Creative Systems in Structural and Construction Engineering

Creative Systems in Structural and Construction Engineering PDF Author: Amarjit Singh
Publisher: CRC Press
ISBN: 1351457071
Category : Technology & Engineering
Languages : en
Pages : 1040

Book Description
An examination of creative systems in structural and construction engineering taken from conference proceedings. Topics covered range from construction methods, safety and quality to seismic response of structural elements and soils and pavement analysis.

Guidelines for Analysis Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges

Guidelines for Analysis Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges PDF Author:
Publisher: Transportation Research Board
ISBN: 0309258391
Category : Curves in engineering
Languages : en
Pages : 199

Book Description
"TRB's National Cooperative Highway Research Program (NCHRP) Report 725: Guidelines for Analysis Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges offers guidance on the appropriate level of analysis needed to determine the constructability and constructed geometry of curved and skewed steel girder bridges. When appropriate in lieu of a 3D analysis, the guidelines also introduce improvements to 1D and 2D analyses that require little additional computational costs."--Publication information.