Author: William Cyrus Navidi
Publisher: McGraw-Hill
ISBN:
Category : Mathematics
Languages : en
Pages : 936
Book Description
Statistics for Engineers and Scientists
Author: William Cyrus Navidi
Publisher: McGraw-Hill
ISBN:
Category : Mathematics
Languages : en
Pages : 936
Book Description
Publisher: McGraw-Hill
ISBN:
Category : Mathematics
Languages : en
Pages : 936
Book Description
Sample Size Calculations
Author: Paul Mathews
Publisher: Mathews Malnar and Bailey
ISBN: 0615324614
Category : Mathematics
Languages : en
Pages : 341
Book Description
Sample Size Calculations: Practical Methods for Engineers and Scientists presents power and sample size calculations for common statistical analyses including methods for means, standard deviations, proportions, counts, regression, correlation, and measures of agreement. Topics of special interest to quality engineering professionals include designed experiments, reliability studies, statistical process control, acceptance sampling, process capability analysis, statistical tolerancing, and gage error studies. The book emphasizes approximate methods, but exact methods are presented when the approximate methods fail. Monte Carlo and bootstrap methods are introduced for situations that don't satisfy the assumptions of the analytical methods. Solutions are presented for more than 170 example problems and solutions for selected example problems using PASS, MINITAB, Piface, and R are posted on the Internet.
Publisher: Mathews Malnar and Bailey
ISBN: 0615324614
Category : Mathematics
Languages : en
Pages : 341
Book Description
Sample Size Calculations: Practical Methods for Engineers and Scientists presents power and sample size calculations for common statistical analyses including methods for means, standard deviations, proportions, counts, regression, correlation, and measures of agreement. Topics of special interest to quality engineering professionals include designed experiments, reliability studies, statistical process control, acceptance sampling, process capability analysis, statistical tolerancing, and gage error studies. The book emphasizes approximate methods, but exact methods are presented when the approximate methods fail. Monte Carlo and bootstrap methods are introduced for situations that don't satisfy the assumptions of the analytical methods. Solutions are presented for more than 170 example problems and solutions for selected example problems using PASS, MINITAB, Piface, and R are posted on the Internet.
Principles of Statistics for Engineers and Scientists
Author: William Cyrus Navidi
Publisher: College Ie Overruns
ISBN: 9780070166974
Category : Engineering
Languages : en
Pages : 582
Book Description
Principles of Statistics for Engineers and Scientists offers the same crystal clear presentation of applied statistics as Bill Navidi's Statistics for Engineers and Scientists text, in a manner especially designed for the needs of a one-semester course that is focused on applications. By presenting ideas in the context of real-world data sets and with plentiful examples of computer output, the book is great for motivating students to understand the importance of statistics in their careers and their lives. The text features a unique approach highlighted by an engaging writing style that explains difficult concepts clearly and the use of contemporary real world data sets to help motivate students and show direct connections to industry and research. While focusing on practical applications of statistics, the text makes extensive use of examples to motivate fundamental concepts and to develop intuition.
Publisher: College Ie Overruns
ISBN: 9780070166974
Category : Engineering
Languages : en
Pages : 582
Book Description
Principles of Statistics for Engineers and Scientists offers the same crystal clear presentation of applied statistics as Bill Navidi's Statistics for Engineers and Scientists text, in a manner especially designed for the needs of a one-semester course that is focused on applications. By presenting ideas in the context of real-world data sets and with plentiful examples of computer output, the book is great for motivating students to understand the importance of statistics in their careers and their lives. The text features a unique approach highlighted by an engaging writing style that explains difficult concepts clearly and the use of contemporary real world data sets to help motivate students and show direct connections to industry and research. While focusing on practical applications of statistics, the text makes extensive use of examples to motivate fundamental concepts and to develop intuition.
Uncertainty Analysis for Engineers and Scientists
Author: Faith A. Morrison
Publisher: Cambridge University Press
ISBN: 1108478352
Category : Computers
Languages : en
Pages : 389
Book Description
Build the skills for determining appropriate error limits for quantities that matter with this essential toolkit. Understand how to handle a complete project and how uncertainty enters into various steps. Provides a systematic, worksheet-based process to determine error limits on measured quantities, and all likely sources of uncertainty are explored, measured or estimated. Features instructions on how to carry out error analysis using Excel and MATLAB®, making previously tedious calculations easy. Whether you are new to the sciences or an experienced engineer, this useful resource provides a practical approach to performing error analysis. Suitable as a text for a junior or senior level laboratory course in aerospace, chemical and mechanical engineering, and for professionals.
Publisher: Cambridge University Press
ISBN: 1108478352
Category : Computers
Languages : en
Pages : 389
Book Description
Build the skills for determining appropriate error limits for quantities that matter with this essential toolkit. Understand how to handle a complete project and how uncertainty enters into various steps. Provides a systematic, worksheet-based process to determine error limits on measured quantities, and all likely sources of uncertainty are explored, measured or estimated. Features instructions on how to carry out error analysis using Excel and MATLAB®, making previously tedious calculations easy. Whether you are new to the sciences or an experienced engineer, this useful resource provides a practical approach to performing error analysis. Suitable as a text for a junior or senior level laboratory course in aerospace, chemical and mechanical engineering, and for professionals.
Statistics and Probability with Applications for Engineers and Scientists
Author: Bhisham C. Gupta
Publisher: John Wiley & Sons
ISBN: 1118464044
Category : Mathematics
Languages : en
Pages : 896
Book Description
Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.
Publisher: John Wiley & Sons
ISBN: 1118464044
Category : Mathematics
Languages : en
Pages : 896
Book Description
Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.
Practical Statistics for Engineers and Scientists
Author: Nicholas P. Cheremisinoff
Publisher: CRC Press
ISBN: 1000125114
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book provides direction in constructing regression routines that can be used with worksheet software on personal computers. The book lists useful references for those readers who desire more in-depth understanding of the mathematical bases, and is helpful for science and engineering students.
Publisher: CRC Press
ISBN: 1000125114
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book provides direction in constructing regression routines that can be used with worksheet software on personal computers. The book lists useful references for those readers who desire more in-depth understanding of the mathematical bases, and is helpful for science and engineering students.
Statistics for Engineers
Author: Jim Morrison
Publisher: John Wiley & Sons
ISBN: 9780470746431
Category : Mathematics
Languages : en
Pages : 192
Book Description
This practical text is an essential source of information for those wanting to know how to deal with the variability that exists in every engineering situation. Using typical engineering data, it presents the basic statistical methods that are relevant, in simple numerical terms. In addition, statistical terminology is translated into basic English. In the past, a lack of communication between engineers and statisticians, coupled with poor practical skills in quality management and statistical engineering, was damaging to products and to the economy. The disastrous consequence of setting tight tolerances without regard to the statistical aspect of process data is demonstrated. This book offers a solution, bridging the gap between statistical science and engineering technology to ensure that the engineers of today are better equipped to serve the manufacturing industry. Inside, you will find coverage on: the nature of variability, describing the use of formulae to pin down sources of variation; engineering design, research and development, demonstrating the methods that help prevent costly mistakes in the early stages of a new product; production, discussing the use of control charts, and; management and training, including directing and controlling the quality function. The Engineering section of the index identifies the role of engineering technology in the service of industrial quality management. The Statistics section identifies points in the text where statistical terminology is used in an explanatory context. Engineers working on the design and manufacturing of new products find this book invaluable as it develops a statistical method by which they can anticipate and resolve quality problems before launching into production. This book appeals to students in all areas of engineering and also managers concerned with the quality of manufactured products. Academic engineers can use this text to teach their students basic practical skills in quality management and statistical engineering, without getting involved in the complex mathematical theory of probability on which statistical science is dependent.
Publisher: John Wiley & Sons
ISBN: 9780470746431
Category : Mathematics
Languages : en
Pages : 192
Book Description
This practical text is an essential source of information for those wanting to know how to deal with the variability that exists in every engineering situation. Using typical engineering data, it presents the basic statistical methods that are relevant, in simple numerical terms. In addition, statistical terminology is translated into basic English. In the past, a lack of communication between engineers and statisticians, coupled with poor practical skills in quality management and statistical engineering, was damaging to products and to the economy. The disastrous consequence of setting tight tolerances without regard to the statistical aspect of process data is demonstrated. This book offers a solution, bridging the gap between statistical science and engineering technology to ensure that the engineers of today are better equipped to serve the manufacturing industry. Inside, you will find coverage on: the nature of variability, describing the use of formulae to pin down sources of variation; engineering design, research and development, demonstrating the methods that help prevent costly mistakes in the early stages of a new product; production, discussing the use of control charts, and; management and training, including directing and controlling the quality function. The Engineering section of the index identifies the role of engineering technology in the service of industrial quality management. The Statistics section identifies points in the text where statistical terminology is used in an explanatory context. Engineers working on the design and manufacturing of new products find this book invaluable as it develops a statistical method by which they can anticipate and resolve quality problems before launching into production. This book appeals to students in all areas of engineering and also managers concerned with the quality of manufactured products. Academic engineers can use this text to teach their students basic practical skills in quality management and statistical engineering, without getting involved in the complex mathematical theory of probability on which statistical science is dependent.
Statistics for Engineers
Author: Hartmut Schiefer
Publisher: Springer Nature
ISBN: 3658323973
Category : Mathematics
Languages : en
Pages : 139
Book Description
This book describes how statistical methods can be effectively applied in the work of an engineer in terms that can be readily understood. Application of these methods enables the effort involved in experiments to be reduced, the results of these experiments to be fully evaluated, and statistically sound statements to be made as a result. Products can be developed more efficiently and manufactured more cost-effectively, not to mention with greater process reliability. The overarching aim is to save time, money, and materials. From the examples provided, the nature of the practical application can be clearly grasped in each case. This book is a translation of the original German 1st edition Statistik für Ingenieure by Hartmut Schiefer and Felix Schiefer, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2018. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). The present version has been revised technically and linguistically by the authors in collaboration with a professional translator. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Publisher: Springer Nature
ISBN: 3658323973
Category : Mathematics
Languages : en
Pages : 139
Book Description
This book describes how statistical methods can be effectively applied in the work of an engineer in terms that can be readily understood. Application of these methods enables the effort involved in experiments to be reduced, the results of these experiments to be fully evaluated, and statistically sound statements to be made as a result. Products can be developed more efficiently and manufactured more cost-effectively, not to mention with greater process reliability. The overarching aim is to save time, money, and materials. From the examples provided, the nature of the practical application can be clearly grasped in each case. This book is a translation of the original German 1st edition Statistik für Ingenieure by Hartmut Schiefer and Felix Schiefer, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2018. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). The present version has been revised technically and linguistically by the authors in collaboration with a professional translator. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Design of Experiments for Engineers and Scientists
Author: Jiju Antony
Publisher: Elsevier
ISBN: 0080994199
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry
Publisher: Elsevier
ISBN: 0080994199
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry
Practical Statistics for Data Scientists
Author: Peter Bruce
Publisher: "O'Reilly Media, Inc."
ISBN: 1491952911
Category : Computers
Languages : en
Pages : 322
Book Description
Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Publisher: "O'Reilly Media, Inc."
ISBN: 1491952911
Category : Computers
Languages : en
Pages : 322
Book Description
Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data