Author: Nipun Kwatra
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 117
Book Description
This thesis presents a semi-implicit method for simulating inviscid compressible flow and its extensions for strong implicit coupling of compressible flow with Lagrangian solids, and artificial transition of fluid from compressible flow to incompressible flow regime for graphics applications. First we present a novel semi-implicit method for alleviating the stringent CFL condition imposed by the sound speed in simulating inviscid compressible flow with shocks, contacts and rarefactions. The method splits the compressible flow flux into two parts -- an advection part and an acoustic part. The advection part is solved using an explicit scheme, while the acoustic part is solved using an implicit method allowing us to avoid the sound speed imposed CFL restriction. Our method leads to a standard Poisson equation similar to what one would solve for incompressible flow, but has an identity term more similar to a diffusion equation. In the limit as the sound speed goes to infinity, one obtains the Poisson equation for incompressible flow. This implicit pressure solve also lends itself nicely to solve for the pressure and coupling forces at a solid fluid interface. With this pressure solve as the foundation, we then develop a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled system. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. The implicit pressure solve allows our method to be used for any sound speed efficiently. In particular as the sound speed goes to infinity, we obtain the standard Poisson equation for incompressible flow. This allows our method to work seamlessly and efficiently as the sound speed in the underlying flow field changes. Building on this feature of our method, we next develop a practical approach to integrating shock wave dynamics into traditional smoke simulations. Previous methods for doing this either simplified away the compressible component of the flow and were unable to capture shock fronts or used a prohibitively expensive explicit method that limits the time step of the simulation long after the relevant shock waves and rarefactions have left the domain. Instead, using our semi-implicit formulation allows us to take time steps on the order of fluid velocity. As we handle the acoustic fluid effects implicitly, we can artificially drive the sound speed c of the fluid to infinity without going unstable or driving the time step to zero. This permits the fluid to transition from compressible flow to the far more tractable incompressible flow regime once the interesting compressible flow phenomena (such as shocks) have left the domain of interest, and allows the use of state-of-the-art smoke simulation techniques.
Practical Methods for Simulation of Compressible Flow and Structure Interactions
Author: Nipun Kwatra
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 117
Book Description
This thesis presents a semi-implicit method for simulating inviscid compressible flow and its extensions for strong implicit coupling of compressible flow with Lagrangian solids, and artificial transition of fluid from compressible flow to incompressible flow regime for graphics applications. First we present a novel semi-implicit method for alleviating the stringent CFL condition imposed by the sound speed in simulating inviscid compressible flow with shocks, contacts and rarefactions. The method splits the compressible flow flux into two parts -- an advection part and an acoustic part. The advection part is solved using an explicit scheme, while the acoustic part is solved using an implicit method allowing us to avoid the sound speed imposed CFL restriction. Our method leads to a standard Poisson equation similar to what one would solve for incompressible flow, but has an identity term more similar to a diffusion equation. In the limit as the sound speed goes to infinity, one obtains the Poisson equation for incompressible flow. This implicit pressure solve also lends itself nicely to solve for the pressure and coupling forces at a solid fluid interface. With this pressure solve as the foundation, we then develop a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled system. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. The implicit pressure solve allows our method to be used for any sound speed efficiently. In particular as the sound speed goes to infinity, we obtain the standard Poisson equation for incompressible flow. This allows our method to work seamlessly and efficiently as the sound speed in the underlying flow field changes. Building on this feature of our method, we next develop a practical approach to integrating shock wave dynamics into traditional smoke simulations. Previous methods for doing this either simplified away the compressible component of the flow and were unable to capture shock fronts or used a prohibitively expensive explicit method that limits the time step of the simulation long after the relevant shock waves and rarefactions have left the domain. Instead, using our semi-implicit formulation allows us to take time steps on the order of fluid velocity. As we handle the acoustic fluid effects implicitly, we can artificially drive the sound speed c of the fluid to infinity without going unstable or driving the time step to zero. This permits the fluid to transition from compressible flow to the far more tractable incompressible flow regime once the interesting compressible flow phenomena (such as shocks) have left the domain of interest, and allows the use of state-of-the-art smoke simulation techniques.
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 117
Book Description
This thesis presents a semi-implicit method for simulating inviscid compressible flow and its extensions for strong implicit coupling of compressible flow with Lagrangian solids, and artificial transition of fluid from compressible flow to incompressible flow regime for graphics applications. First we present a novel semi-implicit method for alleviating the stringent CFL condition imposed by the sound speed in simulating inviscid compressible flow with shocks, contacts and rarefactions. The method splits the compressible flow flux into two parts -- an advection part and an acoustic part. The advection part is solved using an explicit scheme, while the acoustic part is solved using an implicit method allowing us to avoid the sound speed imposed CFL restriction. Our method leads to a standard Poisson equation similar to what one would solve for incompressible flow, but has an identity term more similar to a diffusion equation. In the limit as the sound speed goes to infinity, one obtains the Poisson equation for incompressible flow. This implicit pressure solve also lends itself nicely to solve for the pressure and coupling forces at a solid fluid interface. With this pressure solve as the foundation, we then develop a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled system. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. The implicit pressure solve allows our method to be used for any sound speed efficiently. In particular as the sound speed goes to infinity, we obtain the standard Poisson equation for incompressible flow. This allows our method to work seamlessly and efficiently as the sound speed in the underlying flow field changes. Building on this feature of our method, we next develop a practical approach to integrating shock wave dynamics into traditional smoke simulations. Previous methods for doing this either simplified away the compressible component of the flow and were unable to capture shock fronts or used a prohibitively expensive explicit method that limits the time step of the simulation long after the relevant shock waves and rarefactions have left the domain. Instead, using our semi-implicit formulation allows us to take time steps on the order of fluid velocity. As we handle the acoustic fluid effects implicitly, we can artificially drive the sound speed c of the fluid to infinity without going unstable or driving the time step to zero. This permits the fluid to transition from compressible flow to the far more tractable incompressible flow regime once the interesting compressible flow phenomena (such as shocks) have left the domain of interest, and allows the use of state-of-the-art smoke simulation techniques.
Compressibility, Turbulence and High Speed Flow
Author: Thomas B. Gatski
Publisher: Academic Press
ISBN: 012397318X
Category : Science
Languages : en
Pages : 343
Book Description
Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current trends. - An introduction to current techniques in compressible turbulent flow analysis - An approach that enables engineers to identify and solve complex compressible flow challenges - Prediction methodologies, including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) - Current strategies focusing on compressible flow control
Publisher: Academic Press
ISBN: 012397318X
Category : Science
Languages : en
Pages : 343
Book Description
Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current trends. - An introduction to current techniques in compressible turbulent flow analysis - An approach that enables engineers to identify and solve complex compressible flow challenges - Prediction methodologies, including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) - Current strategies focusing on compressible flow control
Fluid-Structure Interaction
Author: Jean-François Sigrist
Publisher: John Wiley & Sons
ISBN: 1119952271
Category : Science
Languages : en
Pages : 309
Book Description
Fluid-Structure Interaction: An Introduction to Finite Element Coupling fulfils the need for an introductive approach to the general concepts of Finite and Boundary Element Methods for FSI, from the mathematical formulation to the physical interpretation of numerical simulations. Based on the author’s experience in developing numerical codes for industrial applications in shipbuilding and in teaching FSI to both practicing engineers and within academia, it provides a comprehensive and self–contained guide that is geared toward both students and practitioners of mechanical engineering. Composed of six chapters, Fluid–Structure Interaction: An Introduction to Finite Element Coupling progresses logically from formulations and applications involving structure and fluid dynamics, fluid and structure interactions and opens to reduced order-modelling for vibro-acoustic coupling. The author describes simple yet fundamental illustrative examples in detail, using analytical and/or semi–analytical formulation & designed both to illustrate each numerical method and also to highlight a physical aspect of FSI. All proposed examples are simple enough to be computed by the reader using standard computational tools such as MATLAB, making the book a unique tool for self–learning and understanding the basics of the techniques for FSI, or can serve as verification and validation test cases of industrial FEM/BEM codes rendering the book valuable for code verification and validation purposes.
Publisher: John Wiley & Sons
ISBN: 1119952271
Category : Science
Languages : en
Pages : 309
Book Description
Fluid-Structure Interaction: An Introduction to Finite Element Coupling fulfils the need for an introductive approach to the general concepts of Finite and Boundary Element Methods for FSI, from the mathematical formulation to the physical interpretation of numerical simulations. Based on the author’s experience in developing numerical codes for industrial applications in shipbuilding and in teaching FSI to both practicing engineers and within academia, it provides a comprehensive and self–contained guide that is geared toward both students and practitioners of mechanical engineering. Composed of six chapters, Fluid–Structure Interaction: An Introduction to Finite Element Coupling progresses logically from formulations and applications involving structure and fluid dynamics, fluid and structure interactions and opens to reduced order-modelling for vibro-acoustic coupling. The author describes simple yet fundamental illustrative examples in detail, using analytical and/or semi–analytical formulation & designed both to illustrate each numerical method and also to highlight a physical aspect of FSI. All proposed examples are simple enough to be computed by the reader using standard computational tools such as MATLAB, making the book a unique tool for self–learning and understanding the basics of the techniques for FSI, or can serve as verification and validation test cases of industrial FEM/BEM codes rendering the book valuable for code verification and validation purposes.
Computational Fluid-Structure Interaction
Author: Yuri Bazilevs
Publisher: John Wiley & Sons
ISBN: 111848357X
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.
Publisher: John Wiley & Sons
ISBN: 111848357X
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.
Research Directions in Computational Mechanics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309046483
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.
Publisher: National Academies Press
ISBN: 0309046483
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.
Flying Insects and Robots
Author: Dario Floreano
Publisher: Springer Science & Business Media
ISBN: 3540893938
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
Flying insects are intelligent micromachines capable of exquisite maneuvers in unpredictable environments. Understanding these systems advances our knowledge of flight control, sensor suites, and unsteady aerodynamics, which is of crucial interest to engineers developing intelligent flying robots or micro air vehicles (MAVs). The insights we gain when synthesizing bioinspired systems can in turn benefit the fields of neurophysiology, ethology and zoology by providing real-life tests of the proposed models. This book was written by biologists and engineers leading the research in this crossdisciplinary field. It examines all aspects of the mechanics, technology and intelligence of insects and insectoids. After introductory-level overviews of flight control in insects, dedicated chapters focus on the development of autonomous flying systems using biological principles to sense their surroundings and autonomously navigate. A significant part of the book is dedicated to the mechanics and control of flapping wings both in insects and artificial systems. Finally hybrid locomotion, energy harvesting and manufacturing of small flying robots are covered. A particular feature of the book is the depth on realization topics such as control engineering, electronics, mechanics, optics, robotics and manufacturing. This book will be of interest to academic and industrial researchers engaged with theory and engineering in the domains of aerial robotics, artificial intelligence, and entomology.
Publisher: Springer Science & Business Media
ISBN: 3540893938
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
Flying insects are intelligent micromachines capable of exquisite maneuvers in unpredictable environments. Understanding these systems advances our knowledge of flight control, sensor suites, and unsteady aerodynamics, which is of crucial interest to engineers developing intelligent flying robots or micro air vehicles (MAVs). The insights we gain when synthesizing bioinspired systems can in turn benefit the fields of neurophysiology, ethology and zoology by providing real-life tests of the proposed models. This book was written by biologists and engineers leading the research in this crossdisciplinary field. It examines all aspects of the mechanics, technology and intelligence of insects and insectoids. After introductory-level overviews of flight control in insects, dedicated chapters focus on the development of autonomous flying systems using biological principles to sense their surroundings and autonomously navigate. A significant part of the book is dedicated to the mechanics and control of flapping wings both in insects and artificial systems. Finally hybrid locomotion, energy harvesting and manufacturing of small flying robots are covered. A particular feature of the book is the depth on realization topics such as control engineering, electronics, mechanics, optics, robotics and manufacturing. This book will be of interest to academic and industrial researchers engaged with theory and engineering in the domains of aerial robotics, artificial intelligence, and entomology.
Scientific and Technical Aerospace Reports
Fundamental Trends in Fluid-structure Interaction
Author: Giovanni Paolo Galdi
Publisher: World Scientific
ISBN: 9814299324
Category : Science
Languages : en
Pages : 302
Book Description
The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. Fundamental Trends in Fluid-Structure Interaction is a unique collection of important papers written by world-renowned experts aimed at furnishing the highest level of development in several significant areas of fluid-structure interactions. The contributions cover several aspects of this discipline, from mathematical analysis, numerical simulation and modeling viewpoints, including motion of rigid and elastic bodies in a viscous liquid, particulate flow and hemodynamic.
Publisher: World Scientific
ISBN: 9814299324
Category : Science
Languages : en
Pages : 302
Book Description
The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. Fundamental Trends in Fluid-Structure Interaction is a unique collection of important papers written by world-renowned experts aimed at furnishing the highest level of development in several significant areas of fluid-structure interactions. The contributions cover several aspects of this discipline, from mathematical analysis, numerical simulation and modeling viewpoints, including motion of rigid and elastic bodies in a viscous liquid, particulate flow and hemodynamic.
Numerical Mathematics and Advanced Applications 2011
Author: Andrea Cangiani
Publisher: Springer Science & Business Media
ISBN: 3642331343
Category : Mathematics
Languages : en
Pages : 811
Book Description
The European Conferences on Numerical Mathematics and Advanced Applications (ENUMATH) are a series of conferences held every two years to provide a forum for discussion of new trends in numerical mathematics and challenging scientific and industrial applications at the highest level of international expertise. ENUMATH 2011 was hosted by the University of Leicester (UK) from the 5th to 9th September 2011. This proceedings volume contains more than 90 papers by speakers of the conference and gives an overview of recent developments in scientific computing, numerical analysis, and practical use of modern numerical techniques and algorithms in various applications. New results on finite element methods, multiscale methods, numerical linear algebra, and finite difference schemes are presented. A range of applications include computational problems from fluid dynamics, materials, image processing, and molecular dynamics.
Publisher: Springer Science & Business Media
ISBN: 3642331343
Category : Mathematics
Languages : en
Pages : 811
Book Description
The European Conferences on Numerical Mathematics and Advanced Applications (ENUMATH) are a series of conferences held every two years to provide a forum for discussion of new trends in numerical mathematics and challenging scientific and industrial applications at the highest level of international expertise. ENUMATH 2011 was hosted by the University of Leicester (UK) from the 5th to 9th September 2011. This proceedings volume contains more than 90 papers by speakers of the conference and gives an overview of recent developments in scientific computing, numerical analysis, and practical use of modern numerical techniques and algorithms in various applications. New results on finite element methods, multiscale methods, numerical linear algebra, and finite difference schemes are presented. A range of applications include computational problems from fluid dynamics, materials, image processing, and molecular dynamics.
Frontiers in Computational Fluid-Structure Interaction and Flow Simulation
Author: Tayfun E. Tezduyar
Publisher: Springer
ISBN: 3319964690
Category : Mathematics
Languages : en
Pages : 493
Book Description
Computational fluid-structure interaction and flow simulation are challenging research areas that bring solution and analysis to many classes of problems in science, engineering, and technology. Young investigators under the age of 40 are conducting much of the frontier research in these areas, some of which is highlighted in this book. The first author of each chapter took the lead role in carrying out the research presented. The topics covered include Computational aerodynamic and FSI analysis of wind turbines, Simulating free-surface FSI and fatigue-damage in wind-turbine structural systems, Aorta flow analysis and heart valve flow and structure analysis, Interaction of multiphase fluids and solid structures, Computational analysis of tire aerodynamics with actual geometry and road contact, and A general-purpose NURBS mesh generation method for complex geometries. This book will be a valuable resource for early-career researchers and students — not only those interested in computational fluid-structure interaction and flow simulation, but also other fields of engineering and science, including fluid mechanics, solid mechanics and computational mathematics – as it will provide them with inspiration and guidance for conducting their own successful research. It will also be of interest to senior researchers looking to learn more about successful research led by those under 40 and possibly offer collaboration to these researchers.
Publisher: Springer
ISBN: 3319964690
Category : Mathematics
Languages : en
Pages : 493
Book Description
Computational fluid-structure interaction and flow simulation are challenging research areas that bring solution and analysis to many classes of problems in science, engineering, and technology. Young investigators under the age of 40 are conducting much of the frontier research in these areas, some of which is highlighted in this book. The first author of each chapter took the lead role in carrying out the research presented. The topics covered include Computational aerodynamic and FSI analysis of wind turbines, Simulating free-surface FSI and fatigue-damage in wind-turbine structural systems, Aorta flow analysis and heart valve flow and structure analysis, Interaction of multiphase fluids and solid structures, Computational analysis of tire aerodynamics with actual geometry and road contact, and A general-purpose NURBS mesh generation method for complex geometries. This book will be a valuable resource for early-career researchers and students — not only those interested in computational fluid-structure interaction and flow simulation, but also other fields of engineering and science, including fluid mechanics, solid mechanics and computational mathematics – as it will provide them with inspiration and guidance for conducting their own successful research. It will also be of interest to senior researchers looking to learn more about successful research led by those under 40 and possibly offer collaboration to these researchers.