Practical Artificial Intelligence PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Practical Artificial Intelligence PDF full book. Access full book title Practical Artificial Intelligence by Arnaldo Pérez Castaño. Download full books in PDF and EPUB format.

Practical Artificial Intelligence

Practical Artificial Intelligence PDF Author: Arnaldo Pérez Castaño
Publisher: Apress
ISBN: 1484233573
Category : Computers
Languages : en
Pages : 701

Book Description
Discover how all levels Artificial Intelligence (AI) can be present in the most unimaginable scenarios of ordinary lives. This book explores subjects such as neural networks, agents, multi agent systems, supervised learning, and unsupervised learning. These and other topics will be addressed with real world examples, so you can learn fundamental concepts with AI solutions and apply them to your own projects. People tend to talk about AI as something mystical and unrelated to their ordinary life. Practical Artificial Intelligence provides simple explanations and hands on instructions. Rather than focusing on theory and overly scientific language, this book will enable practitioners of all levels to not only learn about AI but implement its practical uses. What You’ll Learn Understand agents and multi agents and how they are incorporated Relate machine learning to real-world problems and see what it means to you Apply supervised and unsupervised learning techniques and methods in the real world Implement reinforcement learning, game programming, simulation, and neural networks Who This Book Is For Computer science students, professionals, and hobbyists interested in AI and its applications.

Practical Artificial Intelligence

Practical Artificial Intelligence PDF Author: Arnaldo Pérez Castaño
Publisher: Apress
ISBN: 1484233573
Category : Computers
Languages : en
Pages : 701

Book Description
Discover how all levels Artificial Intelligence (AI) can be present in the most unimaginable scenarios of ordinary lives. This book explores subjects such as neural networks, agents, multi agent systems, supervised learning, and unsupervised learning. These and other topics will be addressed with real world examples, so you can learn fundamental concepts with AI solutions and apply them to your own projects. People tend to talk about AI as something mystical and unrelated to their ordinary life. Practical Artificial Intelligence provides simple explanations and hands on instructions. Rather than focusing on theory and overly scientific language, this book will enable practitioners of all levels to not only learn about AI but implement its practical uses. What You’ll Learn Understand agents and multi agents and how they are incorporated Relate machine learning to real-world problems and see what it means to you Apply supervised and unsupervised learning techniques and methods in the real world Implement reinforcement learning, game programming, simulation, and neural networks Who This Book Is For Computer science students, professionals, and hobbyists interested in AI and its applications.

Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch PDF Author: Jeremy Howard
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624

Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Practical Artificial Intelligence with Swift

Practical Artificial Intelligence with Swift PDF Author: Mars Geldard
Publisher: O'Reilly Media
ISBN: 1492044784
Category : Computers
Languages : en
Pages : 518

Book Description
Create and implement AI-based features in your Swift apps for iOS, macOS, tvOS, and watchOS. With this practical book, programmers and developers of all kinds will find a one-stop shop for AI and machine learning with Swift. Taking a task-based approach, you’ll learn how to build features that use powerful AI features to identify images, make predictions, generate content, recommend things, and more. AI is increasingly essential for every developer—and you don’t need to be a data scientist or mathematician to take advantage of it in your apps. Explore Swift-based AI and ML techniques for building applications. Learn where and how AI-driven features make sense. Inspect tools such as Apple’s Python-powered Turi Create and Google’s Swift for TensorFlow to train and build models. I: Fundamentals and Tools—Learn AI basics, our task-based approach, and discover how to build or find a dataset. II: Task Based AI—Build vision, audio, text, motion, and augmentation-related features; learn how to convert preexisting models. III: Beyond—Discover the theory behind task-based practice, explore AI and ML methods, and learn how you can build it all from scratch... if you want to

Practical AI for Healthcare Professionals

Practical AI for Healthcare Professionals PDF Author: Abhinav Suri
Publisher: Apress
ISBN: 9781484277799
Category : Computers
Languages : en
Pages : 254

Book Description
Practical AI for Healthcare Professionals Artificial Intelligence (AI) is a buzzword in the healthcare sphere today. However, notions of what AI actually is and how it works are often not discussed. Furthermore, information on AI implementation is often tailored towards seasoned programmers rather than the healthcare professional/beginner coder. This book gives an introduction to practical AI in the medical sphere, focusing on real-life clinical problems, how to solve them with actual code, and how to evaluate the efficacy of those solutions. You’ll start by learning how to diagnose problems as ones that can and cannot be solved with AI. You’ll then learn the basics of computer science algorithms, neural networks, and when each should be applied. Then you’ll tackle the essential parts of basic Python programming relevant to data processing and making AI programs. The Tensorflow/Keras library along with Numpy and Scikit-Learn are covered as well. Once you’ve mastered those basic computer science and programming concepts, you can dive into projects with code, implementation details, and explanations. These projects give you the chance to explore using machine learning algorithms for issues such as predicting the probability of hospital admission from emergency room triage and patient demographic data. We will then use deep learning to determine whether patients have pneumonia using chest X-Ray images. The topics covered in this book not only encompass areas of the medical field where AI is already playing a major role, but also are engineered to cover as much as possible of AI that is relevant to medical diagnostics. Along the way, readers can expect to learn data processing, how to conceptualize problems that can be solved by AI, and how to program solutions to those problems. Physicians and other healthcare professionals who can master these skills will be able to lead AI-based research and diagnostic tool development, ultimately benefiting countless patients.

Artificial Intelligence in Practice

Artificial Intelligence in Practice PDF Author: Bernard Marr
Publisher: John Wiley & Sons
ISBN: 1119548969
Category : Business & Economics
Languages : en
Pages : 352

Book Description
Cyber-solutions to real-world business problems Artificial Intelligence in Practice is a fascinating look into how companies use AI and machine learning to solve problems. Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce.

Practical Machine Learning in R

Practical Machine Learning in R PDF Author: Fred Nwanganga
Publisher: John Wiley & Sons
ISBN: 1119591511
Category : Computers
Languages : en
Pages : 464

Book Description
Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.

The Artificial Intelligence Imperative

The Artificial Intelligence Imperative PDF Author: Anastassia Lauterbach
Publisher: Bloomsbury Publishing USA
ISBN:
Category : Business & Economics
Languages : en
Pages : 240

Book Description
This practical guide to artificial intelligence and its impact on industry dispels common myths and calls for cross-sector, collaborative leadership for the responsible design and embedding of AI in the daily work of businesses and oversight by boards. Artificial intelligence has arrived, and it's coming to a business near you. The disruptive impact of AI on the global economy—from health care to energy, financial services to agriculture, and defense to media—is enormous. Technology literacy is a must for traditional businesses, their boards, policy makers, and governance professionals. This is the first book to explain where AI comes from, why it has emerged as one of the most powerful forces in mergers and acquisitions and research and development, and what companies need to do to implement it successfully. It equips business leaders with a practical roadmap for competing and even thriving in the face of the coming AI revolution. The authors analyze competitive trends, provide industry and governance examples, and explain interactions between AI and other digital technologies, such as blockchain, cybersecurity, and the Internet of Things. At the same time, AI experts will learn how their research and products can increase the competitiveness of their businesses, and corporate boards will come away with a thorough knowledge of the AI governance, ethics, and risk questions to ask.

Practical Machine Learning

Practical Machine Learning PDF Author: Sunila Gollapudi
Publisher: Packt Publishing Ltd
ISBN: 1784394017
Category : Computers
Languages : en
Pages : 468

Book Description
Tackle the real-world complexities of modern machine learning with innovative, cutting-edge, techniques About This Book Fully-coded working examples using a wide range of machine learning libraries and tools, including Python, R, Julia, and Spark Comprehensive practical solutions taking you into the future of machine learning Go a step further and integrate your machine learning projects with Hadoop Who This Book Is For This book has been created for data scientists who want to see machine learning in action and explore its real-world application. With guidance on everything from the fundamentals of machine learning and predictive analytics to the latest innovations set to lead the big data revolution into the future, this is an unmissable resource for anyone dedicated to tackling current big data challenges. Knowledge of programming (Python and R) and mathematics is advisable if you want to get started immediately. What You Will Learn Implement a wide range of algorithms and techniques for tackling complex data Get to grips with some of the most powerful languages in data science, including R, Python, and Julia Harness the capabilities of Spark and Hadoop to manage and process data successfully Apply the appropriate machine learning technique to address real-world problems Get acquainted with Deep learning and find out how neural networks are being used at the cutting-edge of machine learning Explore the future of machine learning and dive deeper into polyglot persistence, semantic data, and more In Detail Finding meaning in increasingly larger and more complex datasets is a growing demand of the modern world. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. Machine learning uses complex algorithms to make improved predictions of outcomes based on historical patterns and the behaviour of data sets. Machine learning can deliver dynamic insights into trends, patterns, and relationships within data, immensely valuable to business growth and development. This book explores an extensive range of machine learning techniques uncovering hidden tricks and tips for several types of data using practical and real-world examples. While machine learning can be highly theoretical, this book offers a refreshing hands-on approach without losing sight of the underlying principles. Inside, a full exploration of the various algorithms gives you high-quality guidance so you can begin to see just how effective machine learning is at tackling contemporary challenges of big data. This is the only book you need to implement a whole suite of open source tools, frameworks, and languages in machine learning. We will cover the leading data science languages, Python and R, and the underrated but powerful Julia, as well as a range of other big data platforms including Spark, Hadoop, and Mahout. Practical Machine Learning is an essential resource for the modern data scientists who want to get to grips with its real-world application. With this book, you will not only learn the fundamentals of machine learning but dive deep into the complexities of real world data before moving on to using Hadoop and its wider ecosystem of tools to process and manage your structured and unstructured data. You will explore different machine learning techniques for both supervised and unsupervised learning; from decision trees to Naive Bayes classifiers and linear and clustering methods, you will learn strategies for a truly advanced approach to the statistical analysis of data. The book also explores the cutting-edge advancements in machine learning, with worked examples and guidance on deep learning and reinforcement learning, providing you with practical demonstrations and samples that help take the theory–and mystery–out of even the most advanced machine learning methodologies. Style and approach A practical data science tutorial designed to give you an insight into the practical application of machine learning, this book takes you through complex concepts and tasks in an accessible way. Featuring information on a wide range of data science techniques, Practical Machine Learning is a comprehensive data science resource.

Practical Artificial Intelligence

Practical Artificial Intelligence PDF Author: Kashyap Kompella
Publisher:
ISBN: 9781686799853
Category :
Languages : en
Pages : 140

Book Description
If you have tried everything imaginable but have never been able to use artificial intelligence to scale your business or enhance your projects, then this could be one of the most important books you have read in years. Do you still find it hard to adopt the whole concept of artificial intelligence in your company? Are you interested in knowing how business owners like you can leverage the fundamentals of artificial intelligence to make smarter decisions, but unsure how to start? "Practical Artificial Intelligence: An Enterprise Playbook" is written to give you an in-depth view of Artificial Intelligence and how it can be used to make analytics more productive and efficient at workplaces. This book reveals what artificial intelligence is in simple terms and how organizations from all walks of life can easily leverage it to run projects successfully and make smarter decisions. This book offers a thorough grounding in enterprise Ai concepts, along with practical instructions on applying its tools and mechanics in real-life situations. Data technology is moving fast and thanks to Ai, organizations can now use machines to perform complex tasks. However, for a lot of companies, incorporating AI into operations can be very daunting. This practical guide breaks down the basics of how Ai works in simple, non-technical terms as well as what it takes for businesses to start incorporating it into their projects in a step-by-step approach. There are many unanswered questions regarding Ai for most people. This book answers them all. Here's a preview of what you'll discover within the pages of this book: How organizations can use and implement artificial intelligence for their daily operations The fundamental concepts, foundation and the applications of artificial intelligence Understanding how you can deploy Ai for your projects even if you have no technical expertise The shortcomings, limitations and strengths of Ai How to use Ai, who needs it, when to use it and when to avoid it And much more... If you want to understand the mechanics of artificial intelligence and how organizations can use it successfully without debugging complex codes, this book is for you. Scroll up and click the "Buy Now" button to get this entire book right now!

Artificial Intelligence

Artificial Intelligence PDF Author: Thomas L. Dean
Publisher: Addison-Wesley Professional
ISBN:
Category : Computers
Languages : en
Pages : 604

Book Description
This book provides a detailed understanding of the broad issues in artificial intelligence and a survey of current AI technology. The author delivers broad coverage of innovative representational techniques, including neural networks, image processing and probabilistic reasoning, alongside the traditional methods of symbolic reasoning. The work is intended for students in artificial intelligence, researchers and LISP programmers.