Author: Huayi Chen
Publisher: Springer Nature
ISBN: 3031616685
Category : Arakelov theory
Languages : en
Pages : 254
Book Description
This monograph presents new research on Arakelov geometry over adelic curves, a novel theory of arithmetic geometry developed by the authors. It explores positivity conditions and establishes the Hilbert-Samuel formula and the equidistribution theorem in the context of adelic curves. Connections with several classical topics in Arakelov geometry and Diophantine geometry are highlighted, such as the arithmetic Hilbert-Samuel formula, positivity of line bundles, equidistribution of small subvarieties, and theorems resembling the Bogomolov conjecture. Detailed proofs and explanations are provided to ensure the text is accessible to both graduate students and experienced researchers.
Positivity in Arakelov Geometry Over Adelic Curves
Author: Huayi Chen
Publisher: Springer Nature
ISBN: 3031616685
Category : Arakelov theory
Languages : en
Pages : 254
Book Description
This monograph presents new research on Arakelov geometry over adelic curves, a novel theory of arithmetic geometry developed by the authors. It explores positivity conditions and establishes the Hilbert-Samuel formula and the equidistribution theorem in the context of adelic curves. Connections with several classical topics in Arakelov geometry and Diophantine geometry are highlighted, such as the arithmetic Hilbert-Samuel formula, positivity of line bundles, equidistribution of small subvarieties, and theorems resembling the Bogomolov conjecture. Detailed proofs and explanations are provided to ensure the text is accessible to both graduate students and experienced researchers.
Publisher: Springer Nature
ISBN: 3031616685
Category : Arakelov theory
Languages : en
Pages : 254
Book Description
This monograph presents new research on Arakelov geometry over adelic curves, a novel theory of arithmetic geometry developed by the authors. It explores positivity conditions and establishes the Hilbert-Samuel formula and the equidistribution theorem in the context of adelic curves. Connections with several classical topics in Arakelov geometry and Diophantine geometry are highlighted, such as the arithmetic Hilbert-Samuel formula, positivity of line bundles, equidistribution of small subvarieties, and theorems resembling the Bogomolov conjecture. Detailed proofs and explanations are provided to ensure the text is accessible to both graduate students and experienced researchers.
Arakelov Geometry over Adelic Curves
Author: Huayi Chen
Publisher: Springer Nature
ISBN: 9811517282
Category : Mathematics
Languages : en
Pages : 468
Book Description
The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of height theory of algebraic points beyond Weil–Lang’s height theory. They then establish a theory of adelic vector bundles on adelic curves, which considerably generalizes the classic geometry of vector bundles or that of Hermitian vector bundles over an arithmetic curve. They focus on an analogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational Arakelov geometry for projective variety over an adelic curve is developed. As an application, a vast generalization of Nakai–Moishezon’s criterion of positivity is proven in clarifying the arguments of geometric nature from several fundamental results in the classic geometry of numbers. Assuming basic knowledge of algebraic geometry and algebraic number theory, the book is almost self-contained. It is suitable for researchers in arithmetic geometry as well as graduate students focusing on these topics for their doctoral theses.
Publisher: Springer Nature
ISBN: 9811517282
Category : Mathematics
Languages : en
Pages : 468
Book Description
The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of height theory of algebraic points beyond Weil–Lang’s height theory. They then establish a theory of adelic vector bundles on adelic curves, which considerably generalizes the classic geometry of vector bundles or that of Hermitian vector bundles over an arithmetic curve. They focus on an analogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational Arakelov geometry for projective variety over an adelic curve is developed. As an application, a vast generalization of Nakai–Moishezon’s criterion of positivity is proven in clarifying the arguments of geometric nature from several fundamental results in the classic geometry of numbers. Assuming basic knowledge of algebraic geometry and algebraic number theory, the book is almost self-contained. It is suitable for researchers in arithmetic geometry as well as graduate students focusing on these topics for their doctoral theses.
Arakelov Geometry and Diophantine Applications
Author: Emmanuel Peyre
Publisher: Springer Nature
ISBN: 3030575594
Category : Mathematics
Languages : en
Pages : 469
Book Description
Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.
Publisher: Springer Nature
ISBN: 3030575594
Category : Mathematics
Languages : en
Pages : 469
Book Description
Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.
Algebra, Arithmetic, and Geometry
Author: Yuri Tschinkel
Publisher: Springer Science & Business Media
ISBN: 0817647457
Category : Mathematics
Languages : en
Pages : 723
Book Description
EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.
Publisher: Springer Science & Business Media
ISBN: 0817647457
Category : Mathematics
Languages : en
Pages : 723
Book Description
EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.
Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry: Volume 2
Author: Raf Cluckers
Publisher: Cambridge University Press
ISBN: 1139501739
Category : Mathematics
Languages : en
Pages : 263
Book Description
The development of Maxim Kontsevich's initial ideas on motivic integration has unexpectedly influenced many other areas of mathematics, ranging from the Langlands program over harmonic analysis, to non-Archimedean analysis, singularity theory and birational geometry. This book assembles the different theories of motivic integration and their applications for the first time, allowing readers to compare different approaches and assess their individual strengths. All of the necessary background is provided to make the book accessible to graduate students and researchers from algebraic geometry, model theory and number theory. Applications in several areas are included so that readers can see motivic integration at work in other domains. In a rapidly-evolving area of research this book will prove invaluable. This second volume discusses various applications of non-Archimedean geometry, model theory and motivic integration and the interactions between these domains.
Publisher: Cambridge University Press
ISBN: 1139501739
Category : Mathematics
Languages : en
Pages : 263
Book Description
The development of Maxim Kontsevich's initial ideas on motivic integration has unexpectedly influenced many other areas of mathematics, ranging from the Langlands program over harmonic analysis, to non-Archimedean analysis, singularity theory and birational geometry. This book assembles the different theories of motivic integration and their applications for the first time, allowing readers to compare different approaches and assess their individual strengths. All of the necessary background is provided to make the book accessible to graduate students and researchers from algebraic geometry, model theory and number theory. Applications in several areas are included so that readers can see motivic integration at work in other domains. In a rapidly-evolving area of research this book will prove invaluable. This second volume discusses various applications of non-Archimedean geometry, model theory and motivic integration and the interactions between these domains.
The Arithmetic of Polynomial Dynamical Pairs
Author: Charles Favre
Publisher: Princeton University Press
ISBN: 0691235481
Category : Mathematics
Languages : en
Pages : 252
Book Description
New mathematical research in arithmetic dynamics In The Arithmetic of Polynomial Dynamical Pairs, Charles Favre and Thomas Gauthier present new mathematical research in the field of arithmetic dynamics. Specifically, the authors study one-dimensional algebraic families of pairs given by a polynomial with a marked point. Combining tools from arithmetic geometry and holomorphic dynamics, they prove an “unlikely intersection” statement for such pairs, thereby demonstrating strong rigidity features for them. They further describe one-dimensional families in the moduli space of polynomials containing infinitely many postcritically finite parameters, proving the dynamical André-Oort conjecture for curves in this context, originally stated by Baker and DeMarco. This is a reader-friendly invitation to a new and exciting research area that brings together sophisticated tools from many branches of mathematics.
Publisher: Princeton University Press
ISBN: 0691235481
Category : Mathematics
Languages : en
Pages : 252
Book Description
New mathematical research in arithmetic dynamics In The Arithmetic of Polynomial Dynamical Pairs, Charles Favre and Thomas Gauthier present new mathematical research in the field of arithmetic dynamics. Specifically, the authors study one-dimensional algebraic families of pairs given by a polynomial with a marked point. Combining tools from arithmetic geometry and holomorphic dynamics, they prove an “unlikely intersection” statement for such pairs, thereby demonstrating strong rigidity features for them. They further describe one-dimensional families in the moduli space of polynomials containing infinitely many postcritically finite parameters, proving the dynamical André-Oort conjecture for curves in this context, originally stated by Baker and DeMarco. This is a reader-friendly invitation to a new and exciting research area that brings together sophisticated tools from many branches of mathematics.
Tropical and Non-Archimedean Geometry
Author: Omid Amini
Publisher: American Mathematical Soc.
ISBN: 1470410214
Category : Mathematics
Languages : en
Pages : 274
Book Description
Over the past decade, it has become apparent that tropical geometry and non-Archimedean geometry should be studied in tandem; each subject has a great deal to say about the other. This volume is a collection of articles dedicated to one or both of these disciplines. Some of the articles are based, at least in part, on the authors' lectures at the 2011 Bellairs Workshop in Number Theory, held from May 6-13, 2011, at the Bellairs Research Institute, Holetown, Barbados. Lecture topics covered in this volume include polyhedral structures on tropical varieties, the structure theory of non-Archimedean curves (algebraic, analytic, tropical, and formal), uniformisation theory for non-Archimedean curves and abelian varieties, and applications to Diophantine geometry. Additional articles selected for inclusion in this volume represent other facets of current research and illuminate connections between tropical geometry, non-Archimedean geometry, toric geometry, algebraic graph theory, and algorithmic aspects of systems of polynomial equations.
Publisher: American Mathematical Soc.
ISBN: 1470410214
Category : Mathematics
Languages : en
Pages : 274
Book Description
Over the past decade, it has become apparent that tropical geometry and non-Archimedean geometry should be studied in tandem; each subject has a great deal to say about the other. This volume is a collection of articles dedicated to one or both of these disciplines. Some of the articles are based, at least in part, on the authors' lectures at the 2011 Bellairs Workshop in Number Theory, held from May 6-13, 2011, at the Bellairs Research Institute, Holetown, Barbados. Lecture topics covered in this volume include polyhedral structures on tropical varieties, the structure theory of non-Archimedean curves (algebraic, analytic, tropical, and formal), uniformisation theory for non-Archimedean curves and abelian varieties, and applications to Diophantine geometry. Additional articles selected for inclusion in this volume represent other facets of current research and illuminate connections between tropical geometry, non-Archimedean geometry, toric geometry, algebraic graph theory, and algorithmic aspects of systems of polynomial equations.
Proceedings of the Symposium on Algebraic Geometry in East Asia
Author: Akira Ohbuchi
Publisher: World Scientific
ISBN: 9789812705105
Category : Mathematics
Languages : en
Pages : 280
Book Description
This book is the proceedings of the conference OC Algebraic Geometry in East AsiaOCO which was held in International Institute for Advanced Studies (IIAS) during August 3 to August 10, 2001.As the breadth of the topics covered in this proceedings demonstrate, the conference was indeed successful in assembling a wide spectrum of East Asian mathematicians, and gave them a welcome chance to discuss current state of algebraic geometry."
Publisher: World Scientific
ISBN: 9789812705105
Category : Mathematics
Languages : en
Pages : 280
Book Description
This book is the proceedings of the conference OC Algebraic Geometry in East AsiaOCO which was held in International Institute for Advanced Studies (IIAS) during August 3 to August 10, 2001.As the breadth of the topics covered in this proceedings demonstrate, the conference was indeed successful in assembling a wide spectrum of East Asian mathematicians, and gave them a welcome chance to discuss current state of algebraic geometry."
Algebraic Geometry In East Asia, Proceedings Of The Symposium
Author: Kazuhiro Konno
Publisher: World Scientific
ISBN: 9814486736
Category : Mathematics
Languages : en
Pages : 273
Book Description
This book is the proceedings of the conference “Algebraic Geometry in East Asia” which was held in International Institute for Advanced Studies (IIAS) during August 3 to August 10, 2001.As the breadth of the topics covered in this proceedings demonstrate, the conference was indeed successful in assembling a wide spectrum of East Asian mathematicians, and gave them a welcome chance to discuss current state of algebraic geometry.
Publisher: World Scientific
ISBN: 9814486736
Category : Mathematics
Languages : en
Pages : 273
Book Description
This book is the proceedings of the conference “Algebraic Geometry in East Asia” which was held in International Institute for Advanced Studies (IIAS) during August 3 to August 10, 2001.As the breadth of the topics covered in this proceedings demonstrate, the conference was indeed successful in assembling a wide spectrum of East Asian mathematicians, and gave them a welcome chance to discuss current state of algebraic geometry.
Brauer Groups, Tamagawa Measures, and Rational Points on Algebraic Varieties
Author: Jorg Jahnel
Publisher: American Mathematical Soc.
ISBN: 1470418827
Category : Mathematics
Languages : en
Pages : 280
Book Description
The central theme of this book is the study of rational points on algebraic varieties of Fano and intermediate type--both in terms of when such points exist and, if they do, their quantitative density. The book consists of three parts. In the first part, the author discusses the concept of a height and formulates Manin's conjecture on the asymptotics of rational points on Fano varieties. The second part introduces the various versions of the Brauer group. The author explains why a Brauer class may serve as an obstruction to weak approximation or even to the Hasse principle. This part includes two sections devoted to explicit computations of the Brauer-Manin obstruction for particular types of cubic surfaces. The final part describes numerical experiments related to the Manin conjecture that were carried out by the author together with Andreas-Stephan Elsenhans. The book presents the state of the art in computational arithmetic geometry for higher-dimensional algebraic varieties and will be a valuable reference for researchers and graduate students interested in that area.
Publisher: American Mathematical Soc.
ISBN: 1470418827
Category : Mathematics
Languages : en
Pages : 280
Book Description
The central theme of this book is the study of rational points on algebraic varieties of Fano and intermediate type--both in terms of when such points exist and, if they do, their quantitative density. The book consists of three parts. In the first part, the author discusses the concept of a height and formulates Manin's conjecture on the asymptotics of rational points on Fano varieties. The second part introduces the various versions of the Brauer group. The author explains why a Brauer class may serve as an obstruction to weak approximation or even to the Hasse principle. This part includes two sections devoted to explicit computations of the Brauer-Manin obstruction for particular types of cubic surfaces. The final part describes numerical experiments related to the Manin conjecture that were carried out by the author together with Andreas-Stephan Elsenhans. The book presents the state of the art in computational arithmetic geometry for higher-dimensional algebraic varieties and will be a valuable reference for researchers and graduate students interested in that area.