Author: Vincenzo Lionetti
Publisher: Frontiers Media SA
ISBN: 2832529046
Category : Science
Languages : en
Pages : 162
Book Description
Plant cell wall in pathogenesis, parasitism and symbiosis, Volume II
Author: Vincenzo Lionetti
Publisher: Frontiers Media SA
ISBN: 2832529046
Category : Science
Languages : en
Pages : 162
Book Description
Publisher: Frontiers Media SA
ISBN: 2832529046
Category : Science
Languages : en
Pages : 162
Book Description
Plant cell wall in pathogenesis, parasitism and symbiosis
Author: Vincenzo Lionetti
Publisher: Frontiers Media SA
ISBN: 2889194426
Category : Botany
Languages : en
Pages : 151
Book Description
The cell wall is a complex structure mainly composed of cellulose microfibrils embedded in a cohesive hemicellulose and pectin matrix. Cell wall structural proteins, enzymes and their inhibitors are also essential components of plant cell walls. They are involved in the cross-link of cell wall polysaccharides, wall structure, and the perception and signaling of defense-related elicitors at the cell surface. In the outer part of the epidermal cells, the polysaccharides are coated by the cuticle, consisting of hydrophobic cutin, suberin and wax layers. Lignin, a macromolecule composed of highly cross-linked phenolic molecules, is a major component of the secondary cell wall. The cell wall is the first cell structure on which interactions between plants and a wide range of other organisms, including insects, nematodes, pathogenic or symbiotic micro-organisms take place. It not only represents a barrier that limits access to the cellular contents that provide a rich nutrient source for pathogens but serves as a source of elicitors of plant defense responses released upon partial enzymatic degradation of wall polysaccharides during infection. Modification of the plant cell wall can also occur at the level of plasmodesmata during virus infection as well as during abiotic stresses. The fine structure and composition of the plant cell wall as well as the regulation of its biosynthesis can thus strongly influence resistance and susceptibility to pathogens. This Research Topic provides novel insights and detailed overviews on the dynamics of the plant cell wall in plant defence, parasitism and symbiosis and describes experimental approaches to study plant cell wall modifications occurring during interaction of plants with different organisms.
Publisher: Frontiers Media SA
ISBN: 2889194426
Category : Botany
Languages : en
Pages : 151
Book Description
The cell wall is a complex structure mainly composed of cellulose microfibrils embedded in a cohesive hemicellulose and pectin matrix. Cell wall structural proteins, enzymes and their inhibitors are also essential components of plant cell walls. They are involved in the cross-link of cell wall polysaccharides, wall structure, and the perception and signaling of defense-related elicitors at the cell surface. In the outer part of the epidermal cells, the polysaccharides are coated by the cuticle, consisting of hydrophobic cutin, suberin and wax layers. Lignin, a macromolecule composed of highly cross-linked phenolic molecules, is a major component of the secondary cell wall. The cell wall is the first cell structure on which interactions between plants and a wide range of other organisms, including insects, nematodes, pathogenic or symbiotic micro-organisms take place. It not only represents a barrier that limits access to the cellular contents that provide a rich nutrient source for pathogens but serves as a source of elicitors of plant defense responses released upon partial enzymatic degradation of wall polysaccharides during infection. Modification of the plant cell wall can also occur at the level of plasmodesmata during virus infection as well as during abiotic stresses. The fine structure and composition of the plant cell wall as well as the regulation of its biosynthesis can thus strongly influence resistance and susceptibility to pathogens. This Research Topic provides novel insights and detailed overviews on the dynamics of the plant cell wall in plant defence, parasitism and symbiosis and describes experimental approaches to study plant cell wall modifications occurring during interaction of plants with different organisms.
How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?
Author: Delphine Vincent
Publisher: Frontiers Media SA
ISBN: 2889450872
Category :
Languages : en
Pages : 190
Book Description
Secretomics describes the global study of proteins that are secreted by a cell, a tissue or an organism, and has recently emerged as a field for which interest is rapidly growing. The term secretome was first coined at the turn of the millennium and was defined to comprise not only the native secreted proteins released into the extracellular space but also the components of machineries for protein secretion. Two secretory pathways have been described in fungi: i) the canonical pathway through which proteins bearing a N-terminal peptide signal can traverse the endoplasmic reticulum and Golgi apparatus, and ii) the unconventional pathway for proteins lacking a peptide signal. Protein secretion systems are more diverse in bacteria, in which types I to VII pathways as well as Sec or two-arginine (Tat) pathways have been described. In oomycete species, effectors are mostly small proteins containing an N-terminal signal peptide for secretion and additional C-terminal motifs such as RXLRs and CRNs for host targeting. It has recently been shown that oomycetes exploit non-conventional secretion mechanisms to transfer certain proteins to the extracellular environment. Other non-classical secretion systems involved in plant-fugal interaction include extracellular vesicles (EVs, Figure 1 from Samuel et al 2016 Front. Plant Sci. 6:766.). The versatility of oomycetes, fungi and bacteria allows them to associate with plants in many ways depending on whether they are biotroph, hemibiotroph, necrotroph, or saprotroph. When interacting with a live organism, a microbe will invade its plant host and manipulate its metabolisms either detrimentally if it is a pathogen or beneficially if it is a symbiote. Deciphering secretomes became a crucial biological question when an increasing body of evidence indicated that secreted proteins were the main effectors initiating interactions, whether of pathogenic or symbiotic nature, between microbes and their plant hosts. Secretomics may help to contribute to the global food security and to the ecosystem sustainability by addressing issues in i) plant biosecurity, with the design of crops resistant to pathogens, ii) crop yield enhancement, for example driven by arbuscular mycorrhizal fungi helping plant hosts utilise phosphate from the soil hence increase biomass, and iii) renewable energy, through the identification of microbial enzymes able to augment the bio-conversion of plant lignocellulosic materials for the production of second generation biofuels that do not compete with food production. To this day, more than a hundred secretomics studies have been published on all taxa and the number of publications is increasing steadily. Secretory pathways have been described in various species of microbes and/or their plant hosts, yet the functions of proteins secreted outside the cell remain to be fully grasped. This Research Topic aims at discussing how secretomics can assist the scientists in gaining knowledge about the mechanisms underpinning plant-microbe interactions.
Publisher: Frontiers Media SA
ISBN: 2889450872
Category :
Languages : en
Pages : 190
Book Description
Secretomics describes the global study of proteins that are secreted by a cell, a tissue or an organism, and has recently emerged as a field for which interest is rapidly growing. The term secretome was first coined at the turn of the millennium and was defined to comprise not only the native secreted proteins released into the extracellular space but also the components of machineries for protein secretion. Two secretory pathways have been described in fungi: i) the canonical pathway through which proteins bearing a N-terminal peptide signal can traverse the endoplasmic reticulum and Golgi apparatus, and ii) the unconventional pathway for proteins lacking a peptide signal. Protein secretion systems are more diverse in bacteria, in which types I to VII pathways as well as Sec or two-arginine (Tat) pathways have been described. In oomycete species, effectors are mostly small proteins containing an N-terminal signal peptide for secretion and additional C-terminal motifs such as RXLRs and CRNs for host targeting. It has recently been shown that oomycetes exploit non-conventional secretion mechanisms to transfer certain proteins to the extracellular environment. Other non-classical secretion systems involved in plant-fugal interaction include extracellular vesicles (EVs, Figure 1 from Samuel et al 2016 Front. Plant Sci. 6:766.). The versatility of oomycetes, fungi and bacteria allows them to associate with plants in many ways depending on whether they are biotroph, hemibiotroph, necrotroph, or saprotroph. When interacting with a live organism, a microbe will invade its plant host and manipulate its metabolisms either detrimentally if it is a pathogen or beneficially if it is a symbiote. Deciphering secretomes became a crucial biological question when an increasing body of evidence indicated that secreted proteins were the main effectors initiating interactions, whether of pathogenic or symbiotic nature, between microbes and their plant hosts. Secretomics may help to contribute to the global food security and to the ecosystem sustainability by addressing issues in i) plant biosecurity, with the design of crops resistant to pathogens, ii) crop yield enhancement, for example driven by arbuscular mycorrhizal fungi helping plant hosts utilise phosphate from the soil hence increase biomass, and iii) renewable energy, through the identification of microbial enzymes able to augment the bio-conversion of plant lignocellulosic materials for the production of second generation biofuels that do not compete with food production. To this day, more than a hundred secretomics studies have been published on all taxa and the number of publications is increasing steadily. Secretory pathways have been described in various species of microbes and/or their plant hosts, yet the functions of proteins secreted outside the cell remain to be fully grasped. This Research Topic aims at discussing how secretomics can assist the scientists in gaining knowledge about the mechanisms underpinning plant-microbe interactions.
Plant-Microbe Interaction: An Approach to Sustainable Agriculture
Author: Devendra K. Choudhary
Publisher: Springer
ISBN: 9811028540
Category : Technology & Engineering
Languages : en
Pages : 515
Book Description
The book addresses current public concern about the adverse effect of agrochemicals and their effect on the agro-ecosystem. This book also aims to satisfy and contribute to the increasing interest in understanding the co-operative activities among microbial populations and their interaction with plants. It contains chapters on a variety of interrelated aspects of plant-microbe interactions with a single theme of stress management and sustainable agriculture. The book will be very useful for students, academicians, researcher working on plant-microbe interaction and also for policy makers involved in food security and sustainable agriculture.
Publisher: Springer
ISBN: 9811028540
Category : Technology & Engineering
Languages : en
Pages : 515
Book Description
The book addresses current public concern about the adverse effect of agrochemicals and their effect on the agro-ecosystem. This book also aims to satisfy and contribute to the increasing interest in understanding the co-operative activities among microbial populations and their interaction with plants. It contains chapters on a variety of interrelated aspects of plant-microbe interactions with a single theme of stress management and sustainable agriculture. The book will be very useful for students, academicians, researcher working on plant-microbe interaction and also for policy makers involved in food security and sustainable agriculture.
Plant Diseases Caused by Dickeya and Pectobacterium Species
Author: Frédérique Van Gijsegem
Publisher: Springer Nature
ISBN: 303061459X
Category : Science
Languages : en
Pages : 298
Book Description
This book provides a detailed review of many different aspects of pathogens, from the effects of single base pair mutations to large-scale control options, bringing into a single volume over 100 years of findings from thousands of researchers worldwide. Diseases caused by soft rot Pectobacteriaceae (SRP) are a major cause of loss to crop, vegetables and ornamental plants worldwide, and have been found on all continents except Antarctica. While different aspects of the SRP have appeared in other books on plant disease, no book, until now, has been dedicated solely to them.
Publisher: Springer Nature
ISBN: 303061459X
Category : Science
Languages : en
Pages : 298
Book Description
This book provides a detailed review of many different aspects of pathogens, from the effects of single base pair mutations to large-scale control options, bringing into a single volume over 100 years of findings from thousands of researchers worldwide. Diseases caused by soft rot Pectobacteriaceae (SRP) are a major cause of loss to crop, vegetables and ornamental plants worldwide, and have been found on all continents except Antarctica. While different aspects of the SRP have appeared in other books on plant disease, no book, until now, has been dedicated solely to them.
Strasburger's Plant Sciences
Author: Andreas Bresinsky
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 628
Book Description
Structure, physiology, evolution, systematics, ecology.
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 628
Book Description
Structure, physiology, evolution, systematics, ecology.
Plant-microbe Interactions 2
Author: Gary Stacey
Publisher: Springer Science & Business Media
ISBN: 1461560535
Category : Science
Languages : en
Pages : 238
Book Description
Plant-Microbe Interactions, Volume 2 Volume 1 of this series has made its appearance and dealt forcefully with impor tant current topics in the field of plant-microbe interactions. We believe that the quality of those chapters was high and should serve as a focal point for the state of the art as well as an enduring reference. Volume 2 builds upon these accom plishments. Chapter 1 discusses the fascinating lipo-chitin signal molecules from Rhizo bium, aspects regarding their biosynthesis, and the basis for host specificity. These molecules are a cardinal example of how microorganisms influence plant development and stimulate speculation that they have identified a previously un known aspect of plant hormone activity. Chapter 2 continues the discussion of Rhizobium by considering the trafficking of carbon and nitrogen in nodules. Al though the ostensible advantage of nodules to plants is the fixation of atmos pheric nitrogen, the actual process involved in supplying reduced nitrogen to the plant host is complex.
Publisher: Springer Science & Business Media
ISBN: 1461560535
Category : Science
Languages : en
Pages : 238
Book Description
Plant-Microbe Interactions, Volume 2 Volume 1 of this series has made its appearance and dealt forcefully with impor tant current topics in the field of plant-microbe interactions. We believe that the quality of those chapters was high and should serve as a focal point for the state of the art as well as an enduring reference. Volume 2 builds upon these accom plishments. Chapter 1 discusses the fascinating lipo-chitin signal molecules from Rhizo bium, aspects regarding their biosynthesis, and the basis for host specificity. These molecules are a cardinal example of how microorganisms influence plant development and stimulate speculation that they have identified a previously un known aspect of plant hormone activity. Chapter 2 continues the discussion of Rhizobium by considering the trafficking of carbon and nitrogen in nodules. Al though the ostensible advantage of nodules to plants is the fixation of atmos pheric nitrogen, the actual process involved in supplying reduced nitrogen to the plant host is complex.
Animal Welfare in Animal Agriculture
Author: Wilson G. Pond
Publisher: CRC Press
ISBN: 1439897859
Category : Medical
Languages : en
Pages : 313
Book Description
What constitutes animal welfare? With animals being used for companionship, service, research, food, fiber, and by-products, animal welfare is a topic of great interest and importance to society. As the world's population continues to increase, a major challenge for society is the maintenance of a strong and viable food system, which is linked to t
Publisher: CRC Press
ISBN: 1439897859
Category : Medical
Languages : en
Pages : 313
Book Description
What constitutes animal welfare? With animals being used for companionship, service, research, food, fiber, and by-products, animal welfare is a topic of great interest and importance to society. As the world's population continues to increase, a major challenge for society is the maintenance of a strong and viable food system, which is linked to t
The Rasputin Effect: When Commensals and Symbionts Become Parasitic
Author: Christon J. Hurst
Publisher: Springer
ISBN: 3319281704
Category : Science
Languages : en
Pages : 364
Book Description
This volume focuses on those instances when benign and even beneficial relationships between microbes and their hosts opportunistically change and become detrimental toward the host. It examines the triggering events which can factor into these changes, such as reduction in the host’s capacity for mounting an effective defensive response due to nutritional deprivation, coinfections and seemingly subtle environmental influences like the amounts of sunlight, temperature, and either water or air quality. The effects of environmental changes can be compounded when they necessitate a physical relocation of species, in turn changing the probability of encounter between microbe and host. The change also can result when pathogens, including virus species, either have modified the opportunist or attacked the host’s protective natural microflora. The authors discuss these opportunistic interactions and assess their outcomes in both aquatic as well as terrestrial ecosystems, highlighting the impact on plant, invertebrate and vertebrate hosts.
Publisher: Springer
ISBN: 3319281704
Category : Science
Languages : en
Pages : 364
Book Description
This volume focuses on those instances when benign and even beneficial relationships between microbes and their hosts opportunistically change and become detrimental toward the host. It examines the triggering events which can factor into these changes, such as reduction in the host’s capacity for mounting an effective defensive response due to nutritional deprivation, coinfections and seemingly subtle environmental influences like the amounts of sunlight, temperature, and either water or air quality. The effects of environmental changes can be compounded when they necessitate a physical relocation of species, in turn changing the probability of encounter between microbe and host. The change also can result when pathogens, including virus species, either have modified the opportunist or attacked the host’s protective natural microflora. The authors discuss these opportunistic interactions and assess their outcomes in both aquatic as well as terrestrial ecosystems, highlighting the impact on plant, invertebrate and vertebrate hosts.
Plant Relationships
Author: Holger B. Deising
Publisher: Springer
ISBN: 9783642099526
Category : Science
Languages : en
Pages : 0
Book Description
Since the publication of the first edition of "The Mycota Vol. V – Plant Relationships" in 1997, tremendous advances in fungal molecular biology and biochemistry have taken place; and both light and electron microscopical techniques have improved considerably. These new insights led to a better understanding of the relationships between fungi and plants; and a completely revised new edition of Plant Relationships could be produced, providing an up-to-date overview on mutualistic and pathogenic interactions. In 18 chapters internationally acknowledged authors present reviews on fungal lifestyles, mechanisms of their interactions with their host plants, signal perception and transduction, and plant defense responses directed against attack by fungal pathogens. Highlighting the recent developments in fungus-plant interactions, this volume is indispensable for researchers, lecturers and students in microbiology, mycology and plant sciences, including plant pathology.
Publisher: Springer
ISBN: 9783642099526
Category : Science
Languages : en
Pages : 0
Book Description
Since the publication of the first edition of "The Mycota Vol. V – Plant Relationships" in 1997, tremendous advances in fungal molecular biology and biochemistry have taken place; and both light and electron microscopical techniques have improved considerably. These new insights led to a better understanding of the relationships between fungi and plants; and a completely revised new edition of Plant Relationships could be produced, providing an up-to-date overview on mutualistic and pathogenic interactions. In 18 chapters internationally acknowledged authors present reviews on fungal lifestyles, mechanisms of their interactions with their host plants, signal perception and transduction, and plant defense responses directed against attack by fungal pathogens. Highlighting the recent developments in fungus-plant interactions, this volume is indispensable for researchers, lecturers and students in microbiology, mycology and plant sciences, including plant pathology.