Author: J. Leliwa-Kopystynski
Publisher: Elsevier
ISBN: 1483291855
Category : Science
Languages : en
Pages : 381
Book Description
Constitution of the Earth's Interior discusses the physical and evolutionary principles connecting various elements of the knowledge about structure and dynamics of the Earth's interior. This work is divided into eight chapters that primarily focus on the physical, chemical, and petrological state. This text contains general data on a general stationary model, which is described by equations of state combining the basic parameters, including pressure, temperature, density, gravity acceleration, and mineral composition within the Earth's interior. Considerable chapters concern the chemical and petrological composition of the matter in the Earth's interior. The remaining chapters describe models containing inhomogeneities used to illustrate processes connected with phase transitions. This book will be of great value to geologists, physicists, and researchers.
Physics and Evolution of the Earth's Interior
Constitution of the Earth's Interior
Author: J. Leliwa-Kopystynski
Publisher: Elsevier
ISBN: 1483291855
Category : Science
Languages : en
Pages : 381
Book Description
Constitution of the Earth's Interior discusses the physical and evolutionary principles connecting various elements of the knowledge about structure and dynamics of the Earth's interior. This work is divided into eight chapters that primarily focus on the physical, chemical, and petrological state. This text contains general data on a general stationary model, which is described by equations of state combining the basic parameters, including pressure, temperature, density, gravity acceleration, and mineral composition within the Earth's interior. Considerable chapters concern the chemical and petrological composition of the matter in the Earth's interior. The remaining chapters describe models containing inhomogeneities used to illustrate processes connected with phase transitions. This book will be of great value to geologists, physicists, and researchers.
Publisher: Elsevier
ISBN: 1483291855
Category : Science
Languages : en
Pages : 381
Book Description
Constitution of the Earth's Interior discusses the physical and evolutionary principles connecting various elements of the knowledge about structure and dynamics of the Earth's interior. This work is divided into eight chapters that primarily focus on the physical, chemical, and petrological state. This text contains general data on a general stationary model, which is described by equations of state combining the basic parameters, including pressure, temperature, density, gravity acceleration, and mineral composition within the Earth's interior. Considerable chapters concern the chemical and petrological composition of the matter in the Earth's interior. The remaining chapters describe models containing inhomogeneities used to illustrate processes connected with phase transitions. This book will be of great value to geologists, physicists, and researchers.
Origin and Evolution of Earth
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309134307
Category : Science
Languages : en
Pages : 150
Book Description
Questions about the origin and nature of Earth and the life on it have long preoccupied human thought and the scientific endeavor. Deciphering the planet's history and processes could improve the ability to predict catastrophes like earthquakes and volcanic eruptions, to manage Earth's resources, and to anticipate changes in climate and geologic processes. At the request of the U.S. Department of Energy, National Aeronautics and Space Administration, National Science Foundation, and U.S. Geological Survey, the National Research Council assembled a committee to propose and explore grand questions in geological and planetary science. This book captures, in a series of questions, the essential scientific challenges that constitute the frontier of Earth science at the start of the 21st century.
Publisher: National Academies Press
ISBN: 0309134307
Category : Science
Languages : en
Pages : 150
Book Description
Questions about the origin and nature of Earth and the life on it have long preoccupied human thought and the scientific endeavor. Deciphering the planet's history and processes could improve the ability to predict catastrophes like earthquakes and volcanic eruptions, to manage Earth's resources, and to anticipate changes in climate and geologic processes. At the request of the U.S. Department of Energy, National Aeronautics and Space Administration, National Science Foundation, and U.S. Geological Survey, the National Research Council assembled a committee to propose and explore grand questions in geological and planetary science. This book captures, in a series of questions, the essential scientific challenges that constitute the frontier of Earth science at the start of the 21st century.
Seismic Wave Propagation in the Earth
Author: Andrzej Hanyga
Publisher: Elsevier Publishing Company
ISBN:
Category : Nature
Languages : en
Pages : 504
Book Description
This volume contains an extensive presentation of the theory, phenomenology and interpretation of seismic waves produced by natural and artificial sources. Each theoretical topic discussed in the book is presented in a self-contained and mathematically rigorous form, yet without excessive demands on the reader's mathematical background. It is the only book to include such a complete presentation of the mathematical background and modern developments of the WKBJ theory of seismic waves, and detailed discussions of its wide ranging applications. The book will therefore be useful to postgraduate students and research workers specialising in seismic wave theory, theoretical seismology, electromagnetic wave theory and other fields of wave propagation theory.
Publisher: Elsevier Publishing Company
ISBN:
Category : Nature
Languages : en
Pages : 504
Book Description
This volume contains an extensive presentation of the theory, phenomenology and interpretation of seismic waves produced by natural and artificial sources. Each theoretical topic discussed in the book is presented in a self-contained and mathematically rigorous form, yet without excessive demands on the reader's mathematical background. It is the only book to include such a complete presentation of the mathematical background and modern developments of the WKBJ theory of seismic waves, and detailed discussions of its wide ranging applications. The book will therefore be useful to postgraduate students and research workers specialising in seismic wave theory, theoretical seismology, electromagnetic wave theory and other fields of wave propagation theory.
Earth's Core
Author: Vernon F. Cormier
Publisher: Elsevier
ISBN: 0128113871
Category : Science
Languages : en
Pages : 326
Book Description
Earth's Core: Geophysics of a Planet's Deepest Interior provides a multidisciplinary approach to Earth's core, including seismology, mineral physics, geomagnetism, and geodynamics. The book examines current observations, experiments, and theories; identifies outstanding research questions; and suggests future directions for study. With topics ranging from the structure of the core-mantle boundary region, to the chemical and physical properties of the core, the workings of the geodynamo, inner core seismology and dynamics, and core formation, this book offers a multidisciplinary perspective on what we know and what we know we have yet to discover. The book begins with the fundamental material and concepts in seismology, mineral physics, geomagnetism, and geodynamics, accessible from a wide range of backgrounds. The book then builds on this foundation to introduce current research, including observations, experiments, and theories. By identifying unsolved problems and promising routes to their solutions, the book is intended to motivate further research, making it a valuable resource both for students entering Earth and planetary sciences and for researchers in a particular subdiscipline who need to broaden their understanding. - Includes multidisciplinary observations constraining the composition and dynamics of the Earth's core - Concisely presents competing theories and arguments on the composition, state, and dynamics of the Earth's interior - Provides observational tests of various theories to enhance understanding - Serves as a valuable resource for researchers in deep earth geophysics, as well as many sub-disciplines, including seismology, geodynamics, geomagnetism, and mineral physics
Publisher: Elsevier
ISBN: 0128113871
Category : Science
Languages : en
Pages : 326
Book Description
Earth's Core: Geophysics of a Planet's Deepest Interior provides a multidisciplinary approach to Earth's core, including seismology, mineral physics, geomagnetism, and geodynamics. The book examines current observations, experiments, and theories; identifies outstanding research questions; and suggests future directions for study. With topics ranging from the structure of the core-mantle boundary region, to the chemical and physical properties of the core, the workings of the geodynamo, inner core seismology and dynamics, and core formation, this book offers a multidisciplinary perspective on what we know and what we know we have yet to discover. The book begins with the fundamental material and concepts in seismology, mineral physics, geomagnetism, and geodynamics, accessible from a wide range of backgrounds. The book then builds on this foundation to introduce current research, including observations, experiments, and theories. By identifying unsolved problems and promising routes to their solutions, the book is intended to motivate further research, making it a valuable resource both for students entering Earth and planetary sciences and for researchers in a particular subdiscipline who need to broaden their understanding. - Includes multidisciplinary observations constraining the composition and dynamics of the Earth's core - Concisely presents competing theories and arguments on the composition, state, and dynamics of the Earth's interior - Provides observational tests of various theories to enhance understanding - Serves as a valuable resource for researchers in deep earth geophysics, as well as many sub-disciplines, including seismology, geodynamics, geomagnetism, and mineral physics
Physics of the Earth
Author: Frank D. Stacey
Publisher: Cambridge University Press
ISBN: 1107394236
Category : Science
Languages : en
Pages : 854
Book Description
The fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www.cambridge.org/9780521873628.
Publisher: Cambridge University Press
ISBN: 1107394236
Category : Science
Languages : en
Pages : 854
Book Description
The fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www.cambridge.org/9780521873628.
Earthquake Thermodynamics and Phase Transformation in the Earth's Interior
Author: Roman Teisseyre
Publisher: Academic Press
ISBN: 0080530656
Category : Science
Languages : en
Pages : 697
Book Description
A group of distinguished scientists contributes to the foundations of a new discipline in Earth sciences: earthquake thermodynamics and thermodynamics of formation of the Earth's interior structures. The predictive powers of thermodynamics are so great that those aspiring to model earthquake and the Earth's interior will certainly wish to be able to use the theory. Thermodynamics is our only method of understanding and predicting the behavior of many environmental, atmospheric, and geological processes. The need for Earth scientists to develop a functional knowledge of thermodynamic concepts and methodology is therefore urgent. Sources of an entropy increase the dissipative and self-organizing systems driving the evolution and dynamics of the Universe and Earth through irreversible processes. The non-linear interactions lead to the formation of fractal structures. From the structural phase transformations the important interior boundaries emerge.Non-linear interactions between the defects in solids lead the authors to develop the physics of continua with a dense distribution of defects. Disclinations and dislocations interact during a slow evolution as well as during rapid dynamic events, like earthquakes. Splitting the dynamic processes into the 2D fault done and 3D surrounding space brings a new tool for describing the slip nucleation and propagation along the earthquake faults. Seismic efficiency, rupture velocity, and complexity of seismic source zone are considered from different points of view, fracture band earthquake model is developed on the basis of thermodynamics of line defects, like dislocations. Earthquake thermodynamics offers us a microscopic model of earthquake sources.Physics of defects helps the authors decscribe and explain a number of precursory phenomena caused by the buildup of stresses. Anomalies in electric polarization and electromagnetic radiation prior to earthquakes are considered from this point of view. Through the thermodynamic approach, the authors arrive at the fascinating question of posssibility of earthquake prediction. In general, the Earth is considered here as a multicomponent system. Transport phenomena as well as wave propagation and shock waves are considered in this system subjected also to chemical and phase transformations.
Publisher: Academic Press
ISBN: 0080530656
Category : Science
Languages : en
Pages : 697
Book Description
A group of distinguished scientists contributes to the foundations of a new discipline in Earth sciences: earthquake thermodynamics and thermodynamics of formation of the Earth's interior structures. The predictive powers of thermodynamics are so great that those aspiring to model earthquake and the Earth's interior will certainly wish to be able to use the theory. Thermodynamics is our only method of understanding and predicting the behavior of many environmental, atmospheric, and geological processes. The need for Earth scientists to develop a functional knowledge of thermodynamic concepts and methodology is therefore urgent. Sources of an entropy increase the dissipative and self-organizing systems driving the evolution and dynamics of the Universe and Earth through irreversible processes. The non-linear interactions lead to the formation of fractal structures. From the structural phase transformations the important interior boundaries emerge.Non-linear interactions between the defects in solids lead the authors to develop the physics of continua with a dense distribution of defects. Disclinations and dislocations interact during a slow evolution as well as during rapid dynamic events, like earthquakes. Splitting the dynamic processes into the 2D fault done and 3D surrounding space brings a new tool for describing the slip nucleation and propagation along the earthquake faults. Seismic efficiency, rupture velocity, and complexity of seismic source zone are considered from different points of view, fracture band earthquake model is developed on the basis of thermodynamics of line defects, like dislocations. Earthquake thermodynamics offers us a microscopic model of earthquake sources.Physics of defects helps the authors decscribe and explain a number of precursory phenomena caused by the buildup of stresses. Anomalies in electric polarization and electromagnetic radiation prior to earthquakes are considered from this point of view. Through the thermodynamic approach, the authors arrive at the fascinating question of posssibility of earthquake prediction. In general, the Earth is considered here as a multicomponent system. Transport phenomena as well as wave propagation and shock waves are considered in this system subjected also to chemical and phase transformations.
Thriving on Our Changing Planet
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309467578
Category : Science
Languages : en
Pages : 717
Book Description
We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.
Publisher: National Academies Press
ISBN: 0309467578
Category : Science
Languages : en
Pages : 717
Book Description
We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.
Dynamics of the Earth's Evolution
Author: Roman Teisseyre
Publisher: Elsevier
ISBN: 1483291596
Category : Science
Languages : en
Pages : 484
Book Description
This sixth volume in the monograph series Physics and Evolution of the Earth's Interior presents the problems of the mature evolution of the Earth's interior. It provides comprehensive coverage of the present state of the mantle convection theory. The relations between paleomagnetism, plate tectonics and mantle convection theory are discussed. A more general view of the evolution based on the thermodynamics of irreversible processes is also given. This book will interest geophysicists, geologists, geodesists and planetologists.
Publisher: Elsevier
ISBN: 1483291596
Category : Science
Languages : en
Pages : 484
Book Description
This sixth volume in the monograph series Physics and Evolution of the Earth's Interior presents the problems of the mature evolution of the Earth's interior. It provides comprehensive coverage of the present state of the mantle convection theory. The relations between paleomagnetism, plate tectonics and mantle convection theory are discussed. A more general view of the evolution based on the thermodynamics of irreversible processes is also given. This book will interest geophysicists, geologists, geodesists and planetologists.
Carbon in Earth's Interior
Author: Craig E. Manning
Publisher: John Wiley & Sons
ISBN: 1119508231
Category : Science
Languages : en
Pages : 373
Book Description
Carbon in Earth's fluid envelopes - the atmosphere, biosphere, and hydrosphere, plays a fundamental role in our planet's climate system and a central role in biology, the environment, and the economy of earth system. The source and original quantity of carbon in our planet is uncertain, as are the identities and relative importance of early chemical processes associated with planetary differentiation. Numerous lines of evidence point to the early and continuing exchange of substantial carbon between Earth's surface and its interior, including diamonds, carbon-rich mantle-derived magmas, carbonate rocks in subduction zones and springs carrying deeply sourced carbon-bearing gases. Thus, there is little doubt that a substantial amount of carbon resides in our planet's interior. Yet, while we know it must be present, carbon's forms, transformations and movements at conditions relevant to the interiors of Earth and other planets remain uncertain and untapped. Volume highlights include: - Reviews key, general topics, such as carbonate minerals, the deep carbon cycle, and carbon in magmas or fluids - Describes new results at the frontiers of the field with presenting results on carbon in minerals, melts, and fluids at extreme conditions of planetary interiors - Brings together emerging insights into carbon's forms, transformations and movements through study of the dynamics, structure, stability and reactivity of carbon-based natural materials - Reviews emerging new insights into the properties of allied substances that carry carbon, into the rates of chemical and physical transformations, and into the complex interactions between moving fluids, magmas, and rocks to the interiors of Earth and other planets - Spans the various chemical redox states of carbon, from reduced hydrocarbons to zero-valent diamond and graphite to oxidized CO2 and carbonates - Captures and synthesizes the exciting results of recent, focused efforts in an emerging scientific discipline - Reports advances over the last decade that have led to a major leap forward in our understanding of carbon science - Compiles the range of methods that can be tapped tap from the deep carbon community, which includes experimentalists, first principles theorists, thermodynamic modelers and geodynamicists - Represents a reference point for future deep carbon science research Carbon in Planetary Interiors will be a valuable resource for researchers and students who study the Earth's interior. The topics of this volume are interdisciplinary, and therefore will be useful to professionals from a wide variety of fields in the Earth Sciences, such as mineral physics, petrology, geochemistry, experimentalists, first principles theorists, thermodynamics, material science, chemistry, geophysics and geodynamics.
Publisher: John Wiley & Sons
ISBN: 1119508231
Category : Science
Languages : en
Pages : 373
Book Description
Carbon in Earth's fluid envelopes - the atmosphere, biosphere, and hydrosphere, plays a fundamental role in our planet's climate system and a central role in biology, the environment, and the economy of earth system. The source and original quantity of carbon in our planet is uncertain, as are the identities and relative importance of early chemical processes associated with planetary differentiation. Numerous lines of evidence point to the early and continuing exchange of substantial carbon between Earth's surface and its interior, including diamonds, carbon-rich mantle-derived magmas, carbonate rocks in subduction zones and springs carrying deeply sourced carbon-bearing gases. Thus, there is little doubt that a substantial amount of carbon resides in our planet's interior. Yet, while we know it must be present, carbon's forms, transformations and movements at conditions relevant to the interiors of Earth and other planets remain uncertain and untapped. Volume highlights include: - Reviews key, general topics, such as carbonate minerals, the deep carbon cycle, and carbon in magmas or fluids - Describes new results at the frontiers of the field with presenting results on carbon in minerals, melts, and fluids at extreme conditions of planetary interiors - Brings together emerging insights into carbon's forms, transformations and movements through study of the dynamics, structure, stability and reactivity of carbon-based natural materials - Reviews emerging new insights into the properties of allied substances that carry carbon, into the rates of chemical and physical transformations, and into the complex interactions between moving fluids, magmas, and rocks to the interiors of Earth and other planets - Spans the various chemical redox states of carbon, from reduced hydrocarbons to zero-valent diamond and graphite to oxidized CO2 and carbonates - Captures and synthesizes the exciting results of recent, focused efforts in an emerging scientific discipline - Reports advances over the last decade that have led to a major leap forward in our understanding of carbon science - Compiles the range of methods that can be tapped tap from the deep carbon community, which includes experimentalists, first principles theorists, thermodynamic modelers and geodynamicists - Represents a reference point for future deep carbon science research Carbon in Planetary Interiors will be a valuable resource for researchers and students who study the Earth's interior. The topics of this volume are interdisciplinary, and therefore will be useful to professionals from a wide variety of fields in the Earth Sciences, such as mineral physics, petrology, geochemistry, experimentalists, first principles theorists, thermodynamics, material science, chemistry, geophysics and geodynamics.