Author: L. C. E. Struik
Publisher: Elsevier Science Limited
ISBN: 9780444416551
Category : Science
Languages : en
Pages : 229
Book Description
Physical Aging in Amorphous Polymers and Other Materials
Author: L. C. E. Struik
Publisher: Elsevier Science Limited
ISBN: 9780444416551
Category : Science
Languages : en
Pages : 229
Book Description
Publisher: Elsevier Science Limited
ISBN: 9780444416551
Category : Science
Languages : en
Pages : 229
Book Description
Physical Properties of Polymers
Author: James E. Mark
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 430
Book Description
The contents have been divided into sections on physical states of polymers and characterization techniques. Chapters on physical states include discussions of the rubber elastic state, the glassy state, melts and concentrated solutions, the crystalline state, and the mesomorphic state. Characterization techniques described are molecular spectroscopy and scattering techniques.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 430
Book Description
The contents have been divided into sections on physical states of polymers and characterization techniques. Chapters on physical states include discussions of the rubber elastic state, the glassy state, melts and concentrated solutions, the crystalline state, and the mesomorphic state. Characterization techniques described are molecular spectroscopy and scattering techniques.
Physical Properties of Semicrystalline Polymers
Author: Peggy Cebe
Publisher:
ISBN:
Category : Microcrystalline polymers
Languages : en
Pages : 614
Book Description
Publisher:
ISBN:
Category : Microcrystalline polymers
Languages : en
Pages : 614
Book Description
Crystallization in Multiphase Polymer Systems
Author: Sabu Thomas
Publisher: Elsevier
ISBN: 0128094311
Category : Technology & Engineering
Languages : en
Pages : 612
Book Description
Crystallization in Multiphase Polymer Systems is the first book that explains in depth the crystallization behavior of multiphase polymer systems. Polymeric structures are more complex in nature than other material structures due to their significant structural disorder. Most of the polymers used today are semicrystalline, and the subject of crystallization is still one of the major issues relating to the performance of semicrystalline polymers in the modern polymer industry. The study of the crystallization processes, crystalline morphologies and other phase transitions is of great significance for the understanding the structure-property relationships of these systems. Crystallization in block copolymers, miscible blends, immiscible blends, and polymer composites and nanocomposites is thoroughly discussed and represents the core coverage of this book. The book critically analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale. Various experimental techniques used for the characterization of polymer crystallization process are discussed. Written by experts in the field of polymer crystallization, this book is a unique source and enables professionals and students to understand crystallization behavior in multiphase polymer systems such as block copolymers, polymer blends, composites and nanocomposites. - Covers crystallization of multiphase polymer systems, including copolymers, blends and nanocomposites - Features comprehensive, detailed information about the basic research, practical applications and new developments for these polymeric materials - Analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale
Publisher: Elsevier
ISBN: 0128094311
Category : Technology & Engineering
Languages : en
Pages : 612
Book Description
Crystallization in Multiphase Polymer Systems is the first book that explains in depth the crystallization behavior of multiphase polymer systems. Polymeric structures are more complex in nature than other material structures due to their significant structural disorder. Most of the polymers used today are semicrystalline, and the subject of crystallization is still one of the major issues relating to the performance of semicrystalline polymers in the modern polymer industry. The study of the crystallization processes, crystalline morphologies and other phase transitions is of great significance for the understanding the structure-property relationships of these systems. Crystallization in block copolymers, miscible blends, immiscible blends, and polymer composites and nanocomposites is thoroughly discussed and represents the core coverage of this book. The book critically analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale. Various experimental techniques used for the characterization of polymer crystallization process are discussed. Written by experts in the field of polymer crystallization, this book is a unique source and enables professionals and students to understand crystallization behavior in multiphase polymer systems such as block copolymers, polymer blends, composites and nanocomposites. - Covers crystallization of multiphase polymer systems, including copolymers, blends and nanocomposites - Features comprehensive, detailed information about the basic research, practical applications and new developments for these polymeric materials - Analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale
Physical Properties and Applications of Polymer Nanocomposites
Author: S C Tjong
Publisher: Elsevier
ISBN: 0857090240
Category : Technology & Engineering
Languages : en
Pages : 943
Book Description
Polymer nanocomposites are polymer matrices reinforced with nano-scale fillers. This new class of composite materials has shown improved mechanical and physical properties. The latter include enhanced optical, electrical and dielectric properties. This important book begins by examining the characteristics of the main types of polymer nanocomposites, then reviews their diverse applications.Part one focuses on polymer/nanoparticle composites, their synthesis, optical properties and electrical conductivity. Part two describes the electrical, dielectric and thermal behaviour of polymer/nanoplatelet composites, whilst polymer/nanotube composites are the subject of Part three. The processing and industrial applications of these nanocomposite materials are discussed in Part four, including uses in fuel cells, bioimaging and sensors as well as the manufacture and applications of electrospun polymer nanocomposite fibers, nanostructured transition metal oxides, clay nanofiller/epoxy nanocomposites, hybrid epoxy-silica-rubber nanocomposites and other rubber-based nanocomposites.Polymer nanocomposites: Physical properties and applications is a valuable reference tool for both the research community and industry professionals wanting to learn about the these materials and their applications in such areas as fuel cell, sensor and biomedical technology. - Examines the characteristics of the main types of polymer nanocomposites and reviews their diverse applications - Comprehensively assesses polymer/nanoparticle composites exploring experimental techniques and data associated with the conductivity and dielectric characterization - A specific section on polymer/nanotube composites features electrical and dielectric behaviour of polymer/carbon nanotube composites
Publisher: Elsevier
ISBN: 0857090240
Category : Technology & Engineering
Languages : en
Pages : 943
Book Description
Polymer nanocomposites are polymer matrices reinforced with nano-scale fillers. This new class of composite materials has shown improved mechanical and physical properties. The latter include enhanced optical, electrical and dielectric properties. This important book begins by examining the characteristics of the main types of polymer nanocomposites, then reviews their diverse applications.Part one focuses on polymer/nanoparticle composites, their synthesis, optical properties and electrical conductivity. Part two describes the electrical, dielectric and thermal behaviour of polymer/nanoplatelet composites, whilst polymer/nanotube composites are the subject of Part three. The processing and industrial applications of these nanocomposite materials are discussed in Part four, including uses in fuel cells, bioimaging and sensors as well as the manufacture and applications of electrospun polymer nanocomposite fibers, nanostructured transition metal oxides, clay nanofiller/epoxy nanocomposites, hybrid epoxy-silica-rubber nanocomposites and other rubber-based nanocomposites.Polymer nanocomposites: Physical properties and applications is a valuable reference tool for both the research community and industry professionals wanting to learn about the these materials and their applications in such areas as fuel cell, sensor and biomedical technology. - Examines the characteristics of the main types of polymer nanocomposites and reviews their diverse applications - Comprehensively assesses polymer/nanoparticle composites exploring experimental techniques and data associated with the conductivity and dielectric characterization - A specific section on polymer/nanotube composites features electrical and dielectric behaviour of polymer/carbon nanotube composites
Biosurfaces
Author: Kantesh Balani
Publisher: John Wiley & Sons
ISBN: 111895064X
Category : Technology & Engineering
Languages : en
Pages : 465
Book Description
Ideal as a graduate textbook, this title is aimed at helping design effective biomaterials, taking into account the complex interactions that occur at the interface when a synthetic material is inserted into a living system. Surface reactivity, biochemistry, substrates, cleaning, preparation, and coatings are presented, with numerous case studies and applications throughout. Highlights include: Starts with concepts and works up to real-life applications such as implantable devices, medical devices, prosthetics, and drug delivery technology Addresses surface reactivity, requirements for surface coating, cleaning and preparation techniques, and characterization Discusses the biological response to coatings Addresses biomaterial-tissue interaction Incorporates nanomechanical properties and processing strategies
Publisher: John Wiley & Sons
ISBN: 111895064X
Category : Technology & Engineering
Languages : en
Pages : 465
Book Description
Ideal as a graduate textbook, this title is aimed at helping design effective biomaterials, taking into account the complex interactions that occur at the interface when a synthetic material is inserted into a living system. Surface reactivity, biochemistry, substrates, cleaning, preparation, and coatings are presented, with numerous case studies and applications throughout. Highlights include: Starts with concepts and works up to real-life applications such as implantable devices, medical devices, prosthetics, and drug delivery technology Addresses surface reactivity, requirements for surface coating, cleaning and preparation techniques, and characterization Discusses the biological response to coatings Addresses biomaterial-tissue interaction Incorporates nanomechanical properties and processing strategies
Developments in Crystalline Polymers—1
Author: David C. Bassett
Publisher: Springer Science & Business Media
ISBN: 9400973438
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
Crystalline or, more properly, semi-crystalline polymers continue to present major challenges and opportunities to scientists and technologists alike. On the one hand, scientific understanding of their structure and properties still lags behind that of other economically important, but less complicated materials. On the other hand, there remains very considerable potential for improving properties in systems designed for specific pur poses. Ways are only just being found of transferring inherent molecular properties (such as high modulus) to the macromolecular solid. Beyond these are many possibilities of manipulating the organization of chemical and physical textures towards desired ends. The chapters in this volume are reports, by wen-known and active researchers, on some of the important recent developments ofthese themes. Grubb begins with the fundamental and central problem of determining polymeric microstructure. Polymers sutTer by comparison with other materials in that it has not generany been possible to exploit the high resolution of the electron microscope to determine their microstructure in adequate detail. However, recently, ways have been found of studying representative lamellar textures in melt-crystallized polymers. When fully exploited these must add greatly to our detailed knowledge and provide a firmer fundamental base for future developments. Radiation damage bears the primary responsibility for restricting electron microscopy. In his chapter, Kener recounts how appreciation of this fact led him into a fascinating study of ever deeper aspects of radiation damage in polyethylene over two decades, often controversiany but invariably clarifying the basic understanding of an area now of increasing commercial importance.
Publisher: Springer Science & Business Media
ISBN: 9400973438
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
Crystalline or, more properly, semi-crystalline polymers continue to present major challenges and opportunities to scientists and technologists alike. On the one hand, scientific understanding of their structure and properties still lags behind that of other economically important, but less complicated materials. On the other hand, there remains very considerable potential for improving properties in systems designed for specific pur poses. Ways are only just being found of transferring inherent molecular properties (such as high modulus) to the macromolecular solid. Beyond these are many possibilities of manipulating the organization of chemical and physical textures towards desired ends. The chapters in this volume are reports, by wen-known and active researchers, on some of the important recent developments ofthese themes. Grubb begins with the fundamental and central problem of determining polymeric microstructure. Polymers sutTer by comparison with other materials in that it has not generany been possible to exploit the high resolution of the electron microscope to determine their microstructure in adequate detail. However, recently, ways have been found of studying representative lamellar textures in melt-crystallized polymers. When fully exploited these must add greatly to our detailed knowledge and provide a firmer fundamental base for future developments. Radiation damage bears the primary responsibility for restricting electron microscopy. In his chapter, Kener recounts how appreciation of this fact led him into a fascinating study of ever deeper aspects of radiation damage in polyethylene over two decades, often controversiany but invariably clarifying the basic understanding of an area now of increasing commercial importance.
Physical Properties of Macromolecules
Author: Laurence A. Belfiore
Publisher: John Wiley & Sons
ISBN: 9780470551585
Category : Technology & Engineering
Languages : en
Pages : 528
Book Description
Explains and analyzes polymer physical chemistry research methods and experimental data Taking a fresh approach to polymer physical chemistry, Physical Properties of Macromolecules integrates the two foundations of physical polymer science, theory and practice. It provides the tools to understand polymer science concepts and research methods, while also instructing how to analyze experimental data. Drawing on the author's own extensive research in physical properties of polymers as well as more traditional topics, this text offers detailed analysis of numerous problems in polymer science, including laboratory data and research results. Topics include: Solid-state dynamics of polymeric materials Glass transitions in amorphous polymers Semicrystalline polymers and melting transitions Viscoelastic behavior Relaxation processes Macromolecule-metal complexes Mechanical properties of linear and crosslinked polymers Filled with detailed graphs to help explain important quantitative trends, Physical Properties of Macromolecules teaches by example, ensuring comprehension of the subject as well as the methodology to implement theory, problem-solving techniques, and research results in practical situations. This resource serves as the ideal companion for government laboratories, industrial research scientists, engineers, and professionals in polymer science fields who are interested in fully grasping all aspects of physical polymer science.
Publisher: John Wiley & Sons
ISBN: 9780470551585
Category : Technology & Engineering
Languages : en
Pages : 528
Book Description
Explains and analyzes polymer physical chemistry research methods and experimental data Taking a fresh approach to polymer physical chemistry, Physical Properties of Macromolecules integrates the two foundations of physical polymer science, theory and practice. It provides the tools to understand polymer science concepts and research methods, while also instructing how to analyze experimental data. Drawing on the author's own extensive research in physical properties of polymers as well as more traditional topics, this text offers detailed analysis of numerous problems in polymer science, including laboratory data and research results. Topics include: Solid-state dynamics of polymeric materials Glass transitions in amorphous polymers Semicrystalline polymers and melting transitions Viscoelastic behavior Relaxation processes Macromolecule-metal complexes Mechanical properties of linear and crosslinked polymers Filled with detailed graphs to help explain important quantitative trends, Physical Properties of Macromolecules teaches by example, ensuring comprehension of the subject as well as the methodology to implement theory, problem-solving techniques, and research results in practical situations. This resource serves as the ideal companion for government laboratories, industrial research scientists, engineers, and professionals in polymer science fields who are interested in fully grasping all aspects of physical polymer science.
Polymer Microscopy
Author: Linda Sawyer
Publisher: Springer Science & Business Media
ISBN: 0387726284
Category : Science
Languages : en
Pages : 568
Book Description
This extensively updated and revised Third Edition is a comprehensive and practical guide to the study of the microstructure of polymers. It is the result of the authors' many years of academic and industrial experience. Introductory chapters deal with the basic concepts of both polymer morphology and processing and microscopy and imaging theory. The core of the book is more applied, with many examples of specimen preparation and image interpretation leading to materials characterization. Emerging techniques such as compositional mapping in which microscopy is combined with spectroscopy are considered. The book closes with a problem solving guide.
Publisher: Springer Science & Business Media
ISBN: 0387726284
Category : Science
Languages : en
Pages : 568
Book Description
This extensively updated and revised Third Edition is a comprehensive and practical guide to the study of the microstructure of polymers. It is the result of the authors' many years of academic and industrial experience. Introductory chapters deal with the basic concepts of both polymer morphology and processing and microscopy and imaging theory. The core of the book is more applied, with many examples of specimen preparation and image interpretation leading to materials characterization. Emerging techniques such as compositional mapping in which microscopy is combined with spectroscopy are considered. The book closes with a problem solving guide.
Fluoropolymer Applications in the Chemical Processing Industries
Author: Sina Ebnesajjad
Publisher: William Andrew
ISBN: 0323461158
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
Fluoropolymer Applications in Chemical Processing Industries: The Definitive User's Guide and Handbook, Second Edition, contains the most extensive collection of data and information on fluoropolymer applications in chemical processing industries. Because of their superior properties, fluoropolymers have been rapidly replacing metal alloys for corrosion inhibition in chemical processing equipment. This book is a complete compendium of information about fluoropolymer lining materials and structural piping and tubing. Fluoropolymer surfaces preserve purity of processing streams in the chemical processing, plastics, food, pharmaceutical, semiconductor, and pulp and paper industries. Updated to reflect major changes since 2004, this book contains practical, problem-solving tools for professionals in those industries. Equipment manufacturers, plant operators, and product design and manufacturing engineers all will benefit from the in-depth knowledge provided. This new edition includes new fluoropolymer grades and new examples of the fluoropolymer role in preventing corrosion. New fabrication techniques have been added, and additional emphasis has been placed on adhesion and welding techniques. New sections have been added on inspection of new linings, and in-service inspection – including inspection frequency, acceptance criteria, fitness for service evaluation, and reparability. - Includes extensive guidelines for the selection of fluoropolymers for corrosion control - Features a detailed 'how-to' on processes that convert fluoropolymers into shapes and parts - Discusses fabrication techniques to finish the fluoropolymer components before exposure to harsh chemical environments - Includes laboratory techniques to determine the cause of part failure, and a modeling methodology to predict and analyze failure of fluoropolymer parts
Publisher: William Andrew
ISBN: 0323461158
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
Fluoropolymer Applications in Chemical Processing Industries: The Definitive User's Guide and Handbook, Second Edition, contains the most extensive collection of data and information on fluoropolymer applications in chemical processing industries. Because of their superior properties, fluoropolymers have been rapidly replacing metal alloys for corrosion inhibition in chemical processing equipment. This book is a complete compendium of information about fluoropolymer lining materials and structural piping and tubing. Fluoropolymer surfaces preserve purity of processing streams in the chemical processing, plastics, food, pharmaceutical, semiconductor, and pulp and paper industries. Updated to reflect major changes since 2004, this book contains practical, problem-solving tools for professionals in those industries. Equipment manufacturers, plant operators, and product design and manufacturing engineers all will benefit from the in-depth knowledge provided. This new edition includes new fluoropolymer grades and new examples of the fluoropolymer role in preventing corrosion. New fabrication techniques have been added, and additional emphasis has been placed on adhesion and welding techniques. New sections have been added on inspection of new linings, and in-service inspection – including inspection frequency, acceptance criteria, fitness for service evaluation, and reparability. - Includes extensive guidelines for the selection of fluoropolymers for corrosion control - Features a detailed 'how-to' on processes that convert fluoropolymers into shapes and parts - Discusses fabrication techniques to finish the fluoropolymer components before exposure to harsh chemical environments - Includes laboratory techniques to determine the cause of part failure, and a modeling methodology to predict and analyze failure of fluoropolymer parts