Author: Baochang Zhang
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110595567
Category : Computers
Languages : en
Pages : 152
Book Description
The book provides an up-to-date on machine learning and visual perception, including decision tree, Bayesian learning, support vector machine, AdaBoost, object detection, compressive sensing, deep learning, and reinforcement learning. Both classic and novel algorithms are introduced. With abundant practical examples, it is an essential reference to students, lecturers, professionals, and any interested lay readers.
Machine Learning and Visual Perception
Author: Baochang Zhang
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110595567
Category : Computers
Languages : en
Pages : 152
Book Description
The book provides an up-to-date on machine learning and visual perception, including decision tree, Bayesian learning, support vector machine, AdaBoost, object detection, compressive sensing, deep learning, and reinforcement learning. Both classic and novel algorithms are introduced. With abundant practical examples, it is an essential reference to students, lecturers, professionals, and any interested lay readers.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110595567
Category : Computers
Languages : en
Pages : 152
Book Description
The book provides an up-to-date on machine learning and visual perception, including decision tree, Bayesian learning, support vector machine, AdaBoost, object detection, compressive sensing, deep learning, and reinforcement learning. Both classic and novel algorithms are introduced. With abundant practical examples, it is an essential reference to students, lecturers, professionals, and any interested lay readers.
Machine Learning And Perception
Author: Guido Tascini
Publisher: World Scientific
ISBN: 9814547921
Category :
Languages : en
Pages : 218
Book Description
As perception stands for the acquisition of a real world representation by interaction with an environment, learning is the modification of this internal representation.This book highlights the relation between perception and learning and describes the influence of the learning in the interaction with the environment.Besides, this volume contains a series of applications of both machine learning and perception, where the former is often embedded in the latter and vice-versa.Among the topics covered, there are visual perception for autonomous robots, model generation of visual patterns, attentional reasoning, genetic approaches and various categories of neural networks.
Publisher: World Scientific
ISBN: 9814547921
Category :
Languages : en
Pages : 218
Book Description
As perception stands for the acquisition of a real world representation by interaction with an environment, learning is the modification of this internal representation.This book highlights the relation between perception and learning and describes the influence of the learning in the interaction with the environment.Besides, this volume contains a series of applications of both machine learning and perception, where the former is often embedded in the latter and vice-versa.Among the topics covered, there are visual perception for autonomous robots, model generation of visual patterns, attentional reasoning, genetic approaches and various categories of neural networks.
Human-Like Machine Intelligence
Author: Stephen Muggleton
Publisher: Oxford University Press
ISBN: 0198862539
Category : Computers
Languages : en
Pages : 533
Book Description
This book, authored by an array of internationally recognised researchers, is of direct relevance to all those involved in Academia and Industry wanting to obtain insights into the topics at the forefront of the revolution in Artificial Intelligence and Cognitive Science.
Publisher: Oxford University Press
ISBN: 0198862539
Category : Computers
Languages : en
Pages : 533
Book Description
This book, authored by an array of internationally recognised researchers, is of direct relevance to all those involved in Academia and Industry wanting to obtain insights into the topics at the forefront of the revolution in Artificial Intelligence and Cognitive Science.
Machine Understanding
Author: Zbigniew Les
Publisher: Springer
ISBN: 3030240703
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
This unique book discusses machine understanding (MU). This new branch of classic machine perception research focuses on perception that leads to understanding and is based on the categories of sensory objects. In this approach the visual and non-visual knowledge, in the form of visual and non-visual concepts, is used in the complex reasoning process that leads to understanding. The book presents selected new concepts, such as perceptual transformations, within the machine understanding framework, and uses perceptual transformations to solve perceptual problems (visual intelligence tests) during understanding, where understanding is regarded as an ability to solve complex visual problems described in the authors’ previous books. Thanks to the uniqueness of the research topics covered, the book appeals to researchers from a wide range of disciplines, especially computer science, cognitive science and philosophy.
Publisher: Springer
ISBN: 3030240703
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
This unique book discusses machine understanding (MU). This new branch of classic machine perception research focuses on perception that leads to understanding and is based on the categories of sensory objects. In this approach the visual and non-visual knowledge, in the form of visual and non-visual concepts, is used in the complex reasoning process that leads to understanding. The book presents selected new concepts, such as perceptual transformations, within the machine understanding framework, and uses perceptual transformations to solve perceptual problems (visual intelligence tests) during understanding, where understanding is regarded as an ability to solve complex visual problems described in the authors’ previous books. Thanks to the uniqueness of the research topics covered, the book appeals to researchers from a wide range of disciplines, especially computer science, cognitive science and philosophy.
Deep Learning for Robot Perception and Cognition
Author: Alexandros Iosifidis
Publisher: Academic Press
ISBN: 0323885721
Category : Technology & Engineering
Languages : en
Pages : 638
Book Description
Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis
Publisher: Academic Press
ISBN: 0323885721
Category : Technology & Engineering
Languages : en
Pages : 638
Book Description
Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis
Artificial Intelligence Methods In Software Testing
Author: Mark Last
Publisher: World Scientific
ISBN: 9814482609
Category : Computers
Languages : en
Pages : 221
Book Description
An inadequate infrastructure for software testing is causing major losses to the world economy. The characteristics of software quality problems are quite similar to other tasks successfully tackled by artificial intelligence techniques. The aims of this book are to present state-of-the-art applications of artificial intelligence and data mining methods to quality assurance of complex software systems, and to encourage further research in this important and challenging area.
Publisher: World Scientific
ISBN: 9814482609
Category : Computers
Languages : en
Pages : 221
Book Description
An inadequate infrastructure for software testing is causing major losses to the world economy. The characteristics of software quality problems are quite similar to other tasks successfully tackled by artificial intelligence techniques. The aims of this book are to present state-of-the-art applications of artificial intelligence and data mining methods to quality assurance of complex software systems, and to encourage further research in this important and challenging area.
Perception and Machine Intelligence
Author: Malay K. Kundu
Publisher: Springer
ISBN: 3642273874
Category : Computers
Languages : en
Pages : 394
Book Description
This book constitutes the proceedings of the First Indo-Japanese conference on Perception and Machine Intelligence, PerMIn 2012, held in Kolkata, India, in January 2012. The 41 papers, presented together with 1 keynote paper and 3 plenary papers, were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections named perception; human-computer interaction; e-nose and e-tongue; machine intelligence and application; image and video processing; and speech and signal processing.
Publisher: Springer
ISBN: 3642273874
Category : Computers
Languages : en
Pages : 394
Book Description
This book constitutes the proceedings of the First Indo-Japanese conference on Perception and Machine Intelligence, PerMIn 2012, held in Kolkata, India, in January 2012. The 41 papers, presented together with 1 keynote paper and 3 plenary papers, were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections named perception; human-computer interaction; e-nose and e-tongue; machine intelligence and application; image and video processing; and speech and signal processing.
Dissimilarity Representation For Pattern Recognition, The: Foundations And Applications
Author: Robert P W Duin
Publisher: World Scientific
ISBN: 9814479144
Category : Computers
Languages : en
Pages : 634
Book Description
This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition.Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and integrate by machine learning procedures. However, if the relations are captured by sets of dissimilarities, general data analysis procedures may be applied for analysis.With their detailed description of an unprecedented approach absent from traditional textbooks, the authors have crafted an essential book for every researcher and systems designer studying or developing pattern recognition systems.
Publisher: World Scientific
ISBN: 9814479144
Category : Computers
Languages : en
Pages : 634
Book Description
This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition.Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and integrate by machine learning procedures. However, if the relations are captured by sets of dissimilarities, general data analysis procedures may be applied for analysis.With their detailed description of an unprecedented approach absent from traditional textbooks, the authors have crafted an essential book for every researcher and systems designer studying or developing pattern recognition systems.
Pattern Classification Using Ensemble Methods
Author: Lior Rokach
Publisher: World Scientific
ISBN: 9814271071
Category : Computers
Languages : en
Pages : 242
Book Description
1. Introduction to pattern classification. 1.1. Pattern classification. 1.2. Induction algorithms. 1.3. Rule induction. 1.4. Decision trees. 1.5. Bayesian methods. 1.6. Other induction methods -- 2. Introduction to ensemble learning. 2.1. Back to the roots. 2.2. The wisdom of crowds. 2.3. The bagging algorithm. 2.4. The boosting algorithm. 2.5. The AdaBoost algorithm. 2.6. No free lunch theorem and ensemble learning. 2.7. Bias-variance decomposition and ensemble learning. 2.8. Occam's razor and ensemble learning. 2.9. Classifier dependency. 2.10. Ensemble methods for advanced classification tasks -- 3. Ensemble classification. 3.1. Fusions methods. 3.2. Selecting classification. 3.3. Mixture of experts and meta learning -- 4. Ensemble diversity. 4.1. Overview. 4.2. Manipulating the inducer. 4.3. Manipulating the training samples. 4.4. Manipulating the target attribute representation. 4.5. Partitioning the search space. 4.6. Multi-inducers. 4.7. Measuring the diversity -- 5. Ensemble selection. 5.1. Ensemble selection. 5.2. Pre selection of the ensemble size. 5.3. Selection of the ensemble size while training. 5.4. Pruning - post selection of the ensemble size -- 6. Error correcting output codes. 6.1. Code-matrix decomposition of multiclass problems. 6.2. Type I - training an ensemble given a code-matrix. 6.3. Type II - adapting code-matrices to the multiclass problems -- 7. Evaluating ensembles of classifiers. 7.1. Generalization error. 7.2. Computational complexity. 7.3. Interpretability of the resulting ensemble. 7.4. Scalability to large datasets. 7.5. Robustness. 7.6. Stability. 7.7. Flexibility. 7.8. Usability. 7.9. Software availability. 7.10. Which ensemble method should be used?
Publisher: World Scientific
ISBN: 9814271071
Category : Computers
Languages : en
Pages : 242
Book Description
1. Introduction to pattern classification. 1.1. Pattern classification. 1.2. Induction algorithms. 1.3. Rule induction. 1.4. Decision trees. 1.5. Bayesian methods. 1.6. Other induction methods -- 2. Introduction to ensemble learning. 2.1. Back to the roots. 2.2. The wisdom of crowds. 2.3. The bagging algorithm. 2.4. The boosting algorithm. 2.5. The AdaBoost algorithm. 2.6. No free lunch theorem and ensemble learning. 2.7. Bias-variance decomposition and ensemble learning. 2.8. Occam's razor and ensemble learning. 2.9. Classifier dependency. 2.10. Ensemble methods for advanced classification tasks -- 3. Ensemble classification. 3.1. Fusions methods. 3.2. Selecting classification. 3.3. Mixture of experts and meta learning -- 4. Ensemble diversity. 4.1. Overview. 4.2. Manipulating the inducer. 4.3. Manipulating the training samples. 4.4. Manipulating the target attribute representation. 4.5. Partitioning the search space. 4.6. Multi-inducers. 4.7. Measuring the diversity -- 5. Ensemble selection. 5.1. Ensemble selection. 5.2. Pre selection of the ensemble size. 5.3. Selection of the ensemble size while training. 5.4. Pruning - post selection of the ensemble size -- 6. Error correcting output codes. 6.1. Code-matrix decomposition of multiclass problems. 6.2. Type I - training an ensemble given a code-matrix. 6.3. Type II - adapting code-matrices to the multiclass problems -- 7. Evaluating ensembles of classifiers. 7.1. Generalization error. 7.2. Computational complexity. 7.3. Interpretability of the resulting ensemble. 7.4. Scalability to large datasets. 7.5. Robustness. 7.6. Stability. 7.7. Flexibility. 7.8. Usability. 7.9. Software availability. 7.10. Which ensemble method should be used?
Image Processing For The Food Industry
Author: E R Davies
Publisher: World Scientific
ISBN: 9814494410
Category : Computers
Languages : en
Pages : 311
Book Description
This monograph provides detailed background on the image processing problems encountered in the food industry when automatic control and inspection systems are being designed and installed. It starts with a careful study of image processing and machine vision methodology, and then goes on to analyse how this can be applied in the main areas of food processing and production. A case study approach is used to give relevance to the work, making the book user-friendly.This book will help the food industry to observe 'due diligence', and researchers to be more aware of the problems of analysing images of food products.
Publisher: World Scientific
ISBN: 9814494410
Category : Computers
Languages : en
Pages : 311
Book Description
This monograph provides detailed background on the image processing problems encountered in the food industry when automatic control and inspection systems are being designed and installed. It starts with a careful study of image processing and machine vision methodology, and then goes on to analyse how this can be applied in the main areas of food processing and production. A case study approach is used to give relevance to the work, making the book user-friendly.This book will help the food industry to observe 'due diligence', and researchers to be more aware of the problems of analysing images of food products.