Author: Sergio G. Salinas Rodriguez
Publisher: CRC Press
ISBN: 0415620929
Category : Science
Languages : en
Pages : 253
Book Description
Characterizing bulk organic matter in seawater and bay water by various analytical techniques and linking these measurements with fouling in membrane systems. Furthermore, it aimed for the development of the Modified Fouling Index - ultrafiltration (MFI-UF) at constant flux filtration as an accurate test to measure the particulate fouling potential of a feed water and predict the rate of fouling in reverse osmosis systems. A new semi-portable set-up has been successfully developed to perform MFI-UF tests at constant flux filtration. A significant effect of the filtration flux on the fouling potential was found. Consequences of this effect for reverse osmosis systems are that the fouling potential at low flux drops dramatically; for ultrafiltration systems it implicates that the rate of fouling increases at high fluxes. The observed effect of flux on the fouling potential has significant implications for fouling potential measurements. Deposition factors in RO systems varied between 0 and 1, depending on location and MFI pore size, which indicates differences in properties of the particles present. Fouling potential results in RO fouling rates of 0.2-1 bar/month depending on the pore size of the membranes used for MFI measurements. The fouling potential of the analysed raw waters is substantially reduced by conventional pre-treatment systems and ultrafiltration: for conventional pre-treatment 37 % - 74 % and ultrafiltration 60 % - 95 %, depending on the location and the MFI pore size.
Particulate and Organic Matter Fouling of Seawater Reverse Osmosis Systems
Author: Sergio G. Salinas Rodriguez
Publisher: CRC Press
ISBN: 0415620929
Category : Science
Languages : en
Pages : 253
Book Description
Characterizing bulk organic matter in seawater and bay water by various analytical techniques and linking these measurements with fouling in membrane systems. Furthermore, it aimed for the development of the Modified Fouling Index - ultrafiltration (MFI-UF) at constant flux filtration as an accurate test to measure the particulate fouling potential of a feed water and predict the rate of fouling in reverse osmosis systems. A new semi-portable set-up has been successfully developed to perform MFI-UF tests at constant flux filtration. A significant effect of the filtration flux on the fouling potential was found. Consequences of this effect for reverse osmosis systems are that the fouling potential at low flux drops dramatically; for ultrafiltration systems it implicates that the rate of fouling increases at high fluxes. The observed effect of flux on the fouling potential has significant implications for fouling potential measurements. Deposition factors in RO systems varied between 0 and 1, depending on location and MFI pore size, which indicates differences in properties of the particles present. Fouling potential results in RO fouling rates of 0.2-1 bar/month depending on the pore size of the membranes used for MFI measurements. The fouling potential of the analysed raw waters is substantially reduced by conventional pre-treatment systems and ultrafiltration: for conventional pre-treatment 37 % - 74 % and ultrafiltration 60 % - 95 %, depending on the location and the MFI pore size.
Publisher: CRC Press
ISBN: 0415620929
Category : Science
Languages : en
Pages : 253
Book Description
Characterizing bulk organic matter in seawater and bay water by various analytical techniques and linking these measurements with fouling in membrane systems. Furthermore, it aimed for the development of the Modified Fouling Index - ultrafiltration (MFI-UF) at constant flux filtration as an accurate test to measure the particulate fouling potential of a feed water and predict the rate of fouling in reverse osmosis systems. A new semi-portable set-up has been successfully developed to perform MFI-UF tests at constant flux filtration. A significant effect of the filtration flux on the fouling potential was found. Consequences of this effect for reverse osmosis systems are that the fouling potential at low flux drops dramatically; for ultrafiltration systems it implicates that the rate of fouling increases at high fluxes. The observed effect of flux on the fouling potential has significant implications for fouling potential measurements. Deposition factors in RO systems varied between 0 and 1, depending on location and MFI pore size, which indicates differences in properties of the particles present. Fouling potential results in RO fouling rates of 0.2-1 bar/month depending on the pore size of the membranes used for MFI measurements. The fouling potential of the analysed raw waters is substantially reduced by conventional pre-treatment systems and ultrafiltration: for conventional pre-treatment 37 % - 74 % and ultrafiltration 60 % - 95 %, depending on the location and the MFI pore size.
Pretreatment for Reverse Osmosis Desalination
Author: Nikolay Voutchkov
Publisher: Elsevier
ISBN: 0128099453
Category : Science
Languages : en
Pages : 308
Book Description
Pretreatment for Reverse Osmosis Desalination is a comprehensive reference on all existing and emerging seawater pretreatment technologies used for desalination. The book focuses on reverse osmosis membrane desalination, which at present is the most widely applied technology for the production of fresh drinking water from highly saline water sources (brackish water and seawater). Each chapter contains examples illustrating various pretreatment technologies and their practical implementation. - Provides in-depth overview of the key theoretical concepts associated with desalination pre-treatment - Gives insight into the latest trends in membrane separation technology - Incorporates analytical methods and guidelines for monitoring pretreatment systems
Publisher: Elsevier
ISBN: 0128099453
Category : Science
Languages : en
Pages : 308
Book Description
Pretreatment for Reverse Osmosis Desalination is a comprehensive reference on all existing and emerging seawater pretreatment technologies used for desalination. The book focuses on reverse osmosis membrane desalination, which at present is the most widely applied technology for the production of fresh drinking water from highly saline water sources (brackish water and seawater). Each chapter contains examples illustrating various pretreatment technologies and their practical implementation. - Provides in-depth overview of the key theoretical concepts associated with desalination pre-treatment - Gives insight into the latest trends in membrane separation technology - Incorporates analytical methods and guidelines for monitoring pretreatment systems
Basic Principles of Membrane Technology
Author: Marcel Mulder
Publisher: Springer Science & Business Media
ISBN: 940091766X
Category : Science
Languages : en
Pages : 575
Book Description
III . 2 Preparation of synthetic membranes 72 III . 3 Phase inversion membranes 75 III. 3. 1 Preparation by evaporation 76 III . 3. 2 Precipitation. from the vapour phase 76 III . 3. 3 Precipitation by controlled evaporation 76 Thermal precipitation 76 III . 3. 4 III . 3. 5 Immersion precipitation 77 Preparation techniques for immersion precipitation 77 III . 4 Flat membranes 77 III . 4. 1 78 III . 4. 2 Tubular membranes 81 III . 5 Preparation techniques for composite membranes 82 III. 5. 1 Interfacial polymerisation Dip-coating 83 III . 5. 2 III . 5. 3 Plasma polymerisation 86 III . 5. 4 Modification of homogeneous dense membranes 87 III . 6 Phase separation in polymer systems 89 III . 6. 1 Introduction 89 III . 6. 1. 1 Thermodynamics 89 III . 6. 2 Demixing processes 99 III . 6. 2. 1 Binary mixtures 99 III . 6. 2. 2 Ternary systems 102 III . 6. 3 Crystallisation 104 III . 6. 4 Gelation 106 III . 6. 5 Vitrification 108 III . 6. 6 Thermal precipitation 109 III . 6. 7 Immersion precipitation 110 III . 6. 8 Diffusional aspects 114 III . 6. 9 Mechanism of membrane formation 117 III. 7 Influence of various parameters on membrane morphology 123 III. 7. 1 Choice of solvent-nonsolvent system 123 III . 7. 2 Choice of the polymer 129 III . 7. 3 Polymer concentration 130 III . 7. 4 Composition of the coagulation bath 132 III . 7. 5 Composition of the casting solution 133 III . 7.
Publisher: Springer Science & Business Media
ISBN: 940091766X
Category : Science
Languages : en
Pages : 575
Book Description
III . 2 Preparation of synthetic membranes 72 III . 3 Phase inversion membranes 75 III. 3. 1 Preparation by evaporation 76 III . 3. 2 Precipitation. from the vapour phase 76 III . 3. 3 Precipitation by controlled evaporation 76 Thermal precipitation 76 III . 3. 4 III . 3. 5 Immersion precipitation 77 Preparation techniques for immersion precipitation 77 III . 4 Flat membranes 77 III . 4. 1 78 III . 4. 2 Tubular membranes 81 III . 5 Preparation techniques for composite membranes 82 III. 5. 1 Interfacial polymerisation Dip-coating 83 III . 5. 2 III . 5. 3 Plasma polymerisation 86 III . 5. 4 Modification of homogeneous dense membranes 87 III . 6 Phase separation in polymer systems 89 III . 6. 1 Introduction 89 III . 6. 1. 1 Thermodynamics 89 III . 6. 2 Demixing processes 99 III . 6. 2. 1 Binary mixtures 99 III . 6. 2. 2 Ternary systems 102 III . 6. 3 Crystallisation 104 III . 6. 4 Gelation 106 III . 6. 5 Vitrification 108 III . 6. 6 Thermal precipitation 109 III . 6. 7 Immersion precipitation 110 III . 6. 8 Diffusional aspects 114 III . 6. 9 Mechanism of membrane formation 117 III. 7 Influence of various parameters on membrane morphology 123 III. 7. 1 Choice of solvent-nonsolvent system 123 III . 7. 2 Choice of the polymer 129 III . 7. 3 Polymer concentration 130 III . 7. 4 Composition of the coagulation bath 132 III . 7. 5 Composition of the casting solution 133 III . 7.
Controlling Biofouling in Seawater Reverse Osmosis Membrane Systems
Author: Nirajan Dhakal
Publisher: CRC Press
ISBN: 1351056085
Category : Science
Languages : en
Pages : 175
Book Description
Seawater desalination is a rapidly growing coastal industry that is increasingly threatened by algal blooms. Depending on the severity of algal blooms, desalination systems may be forced to shut down because of clogging and/or poor feed water quality. To maintain stable operation and provide good feed water quality to seawater reverse osmosis (SWRO) systems, ultrafiltration (UF) pre-treatment is proposed. This research focused on assessing the ability of UF and other pre-treatment technologies to reduce biofouling in SWRO systems. An improved method to measure bacterial regrowth potential (BRP) was developed and applied at laboratory, pilot and full scale to assess the ability of conventional UF (150 kDa) and tight UF (10 kDa) alone and in combination with a phosphate adsorbent to reduce regrowth potential and delay the onset of biofouling in SWRO. The improved bacterial regrowth potential method employs a natural consortium of marine bacteria as inoculum and flow cytometry. The limit of detection of the BRP method was lowered to 43,000 ± 12,000 cells/mL, which is equivalent to 9.3 ± 2.6 μg-Cglucose/L. The reduction in bacterial regrowth potential after tight UF (10 kDa) was 3 to 4 times higher than with conventional UF (150 kDa). It was further reduced after the application of a phosphate adsorbent, independent of pore size of the UF membrane. Pilot studies demonstrated that the application of tight UF (10 kDa) coupled with a phosphate adsorbent consistently lowered the bacterial regrowth potential and no feed channel pressure drop increase was observed in membrane fouling simulators (MFS) over a period of 21 days. The study also showed that non-backwashable fouling of UF membranes varied strongly with the type of algal species and the algal organic matter (AOM) they release. The presence of polysaccharide (stretching -OH) and sugar ester groups (stretching S=O) was the main cause of non-backwashable fouling. In conclusion, this study showed that an improved BRP method is suitable for the assessment of SWRO pre-treatment systems and it can be a useful tool to develop potential strategies to mitigate biofouling and improve the sustainability of SWRO systems.
Publisher: CRC Press
ISBN: 1351056085
Category : Science
Languages : en
Pages : 175
Book Description
Seawater desalination is a rapidly growing coastal industry that is increasingly threatened by algal blooms. Depending on the severity of algal blooms, desalination systems may be forced to shut down because of clogging and/or poor feed water quality. To maintain stable operation and provide good feed water quality to seawater reverse osmosis (SWRO) systems, ultrafiltration (UF) pre-treatment is proposed. This research focused on assessing the ability of UF and other pre-treatment technologies to reduce biofouling in SWRO systems. An improved method to measure bacterial regrowth potential (BRP) was developed and applied at laboratory, pilot and full scale to assess the ability of conventional UF (150 kDa) and tight UF (10 kDa) alone and in combination with a phosphate adsorbent to reduce regrowth potential and delay the onset of biofouling in SWRO. The improved bacterial regrowth potential method employs a natural consortium of marine bacteria as inoculum and flow cytometry. The limit of detection of the BRP method was lowered to 43,000 ± 12,000 cells/mL, which is equivalent to 9.3 ± 2.6 μg-Cglucose/L. The reduction in bacterial regrowth potential after tight UF (10 kDa) was 3 to 4 times higher than with conventional UF (150 kDa). It was further reduced after the application of a phosphate adsorbent, independent of pore size of the UF membrane. Pilot studies demonstrated that the application of tight UF (10 kDa) coupled with a phosphate adsorbent consistently lowered the bacterial regrowth potential and no feed channel pressure drop increase was observed in membrane fouling simulators (MFS) over a period of 21 days. The study also showed that non-backwashable fouling of UF membranes varied strongly with the type of algal species and the algal organic matter (AOM) they release. The presence of polysaccharide (stretching -OH) and sugar ester groups (stretching S=O) was the main cause of non-backwashable fouling. In conclusion, this study showed that an improved BRP method is suitable for the assessment of SWRO pre-treatment systems and it can be a useful tool to develop potential strategies to mitigate biofouling and improve the sustainability of SWRO systems.
Assessing Bacterial Growth Potential in Seawater Reverse Osmosis Pretreatment
Author: Almotasembellah Abushaban
Publisher: CRC Press
ISBN: 1000034704
Category : Science
Languages : en
Pages : 146
Book Description
Seawater desalination is increasingly being used as a means to augment freshwater supplies in regions with high water stress, and reverse osmosis is increasingly the technology of choice because of the low energy consumption. However, seawater reverse osmosis (SWRO) systems suffer from various types of fouling, which can increase energy consumption and the use of chemicals during SWRO operation. In practice, pre-treatment systems are put in place to reduce the particulate and biological fouling potential of SWRO feed water. However, simple, reliable and accurate methods to assess the extent to which biological fouling potential is reduced during pre-treatment are not available for seawater. This research developed a new method to measure bacterial growth potential (BGP) using the native bacterial consortium in seawater. New reagents to extract and detect ATP in microbial cells were specifically developed for seawater. The new lysis and detection reagents overcame the salt interference in seawater and allow low detection of total ATP, free ATP and microbial ATP in seawater. Incorporating a filtration step further increased the sensitivity of the method six fold, enabling ATP detection of ultra-low levels of microbial ATP in seawater. The newly developed ATP-based BGP method was applied to monitor and assess the pre-treatment of five full-scale seawater desalination plants around the world. A good correlation was observed between BGP measured in SWRO feed water and the pressure drop increase in the SWRO systems, suggesting the applicability of using the ATP-based BGP method as a biofouling indicator in SWRO. Furthermore, a safe level of BGP ( In the future, on-line monitoring of BGP in SWRO feed water may further reduce the consumption of chemicals and energy and improve the overall sustainability of seawater desalination by reverse osmosis.
Publisher: CRC Press
ISBN: 1000034704
Category : Science
Languages : en
Pages : 146
Book Description
Seawater desalination is increasingly being used as a means to augment freshwater supplies in regions with high water stress, and reverse osmosis is increasingly the technology of choice because of the low energy consumption. However, seawater reverse osmosis (SWRO) systems suffer from various types of fouling, which can increase energy consumption and the use of chemicals during SWRO operation. In practice, pre-treatment systems are put in place to reduce the particulate and biological fouling potential of SWRO feed water. However, simple, reliable and accurate methods to assess the extent to which biological fouling potential is reduced during pre-treatment are not available for seawater. This research developed a new method to measure bacterial growth potential (BGP) using the native bacterial consortium in seawater. New reagents to extract and detect ATP in microbial cells were specifically developed for seawater. The new lysis and detection reagents overcame the salt interference in seawater and allow low detection of total ATP, free ATP and microbial ATP in seawater. Incorporating a filtration step further increased the sensitivity of the method six fold, enabling ATP detection of ultra-low levels of microbial ATP in seawater. The newly developed ATP-based BGP method was applied to monitor and assess the pre-treatment of five full-scale seawater desalination plants around the world. A good correlation was observed between BGP measured in SWRO feed water and the pressure drop increase in the SWRO systems, suggesting the applicability of using the ATP-based BGP method as a biofouling indicator in SWRO. Furthermore, a safe level of BGP ( In the future, on-line monitoring of BGP in SWRO feed water may further reduce the consumption of chemicals and energy and improve the overall sustainability of seawater desalination by reverse osmosis.
Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities
Author: Thomas M. Missimer
Publisher: Springer
ISBN: 3319132032
Category : Business & Economics
Languages : en
Pages : 551
Book Description
The book assembles the latest research on new design techniques in water supplies using desalinated seawater. The authors examine the diverse issues related to the intakes and outfalls of these facilities. They clarify how and why these key components of the facilities impact the cost of operation and subsequently the cost of water supplied to the consumers. The book consists of contributed articles from a number of experts in the field who presented their findings at the "Desalination Intakes and Outfalls" workshop held at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia in October, 2013. The book integrates coverage relevant to a wide variety of researchers and professionals in the general fields of environmental engineering and sustainable development.
Publisher: Springer
ISBN: 3319132032
Category : Business & Economics
Languages : en
Pages : 551
Book Description
The book assembles the latest research on new design techniques in water supplies using desalinated seawater. The authors examine the diverse issues related to the intakes and outfalls of these facilities. They clarify how and why these key components of the facilities impact the cost of operation and subsequently the cost of water supplied to the consumers. The book consists of contributed articles from a number of experts in the field who presented their findings at the "Desalination Intakes and Outfalls" workshop held at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia in October, 2013. The book integrates coverage relevant to a wide variety of researchers and professionals in the general fields of environmental engineering and sustainable development.
Reverse Osmosis Process
Reverse Osmosis Seawater Desalination Volume 1
Author: Heinz Ludwig
Publisher: Springer Nature
ISBN: 3030819310
Category : Science
Languages : en
Pages : 749
Book Description
Seawater reverse osmosis (SWRO) is the dominant desalination process worldwide for obtaining fresh water from the sea. The subject matter and scope of this book is the conceptual and advanced planning, design and engineering of plants of this desalination process together with the associated facilities for seawater pretreatment, post-treatment of the product water, wastewater treatment, seawater extraction and plant discharge. The book is intended to be used by technicians, engineers, economists and ecologists in the planning, design and operation of SWRO plants, as an educational and training tool, as well as an aid in environmental licensing of membrane desalination plants, and by interested laypersons for information about this process. The two volumes are also available as a set.
Publisher: Springer Nature
ISBN: 3030819310
Category : Science
Languages : en
Pages : 749
Book Description
Seawater reverse osmosis (SWRO) is the dominant desalination process worldwide for obtaining fresh water from the sea. The subject matter and scope of this book is the conceptual and advanced planning, design and engineering of plants of this desalination process together with the associated facilities for seawater pretreatment, post-treatment of the product water, wastewater treatment, seawater extraction and plant discharge. The book is intended to be used by technicians, engineers, economists and ecologists in the planning, design and operation of SWRO plants, as an educational and training tool, as well as an aid in environmental licensing of membrane desalination plants, and by interested laypersons for information about this process. The two volumes are also available as a set.
Reverse Osmosis
Author: Fauzi Ismail
Publisher: Elsevier
ISBN: 0128115394
Category : Science
Languages : en
Pages : 304
Book Description
Reverse Osmosis starts with an overview of the historic development of the RO membrane, the RO process, and its effect on other membrane separation processes. Other chapters cover the development of nanocomposites of TFC membranes and modern membrane characterization techniques, such as TEM, AFM and PALS, the RO membrane transport model, and RO membrane fouling. The book also describes, in detail, experimental methods for setting up RO experiments, RO membrane modules, RO membrane systems, and desalination and water treatment by RO. Applications in food, pharmaceutical, chemical, biochemical, petroleum and petrochemical industries are also summarized. Other sections cover the development of RO membranes with high thermal and chemical stability, attempts to develop polymeric or inorganic membranes, and hybrid processes where RO is combined with forward osmosis (FO) or membrane distillation (MD). - Written by renowned experts in the field who have complementary expertise - Provides an in-depth discussion of reverse osmosis transport based on nano-level membrane structure - Comprehensively reviews recent progresses in novel reverse osmosis membrane development
Publisher: Elsevier
ISBN: 0128115394
Category : Science
Languages : en
Pages : 304
Book Description
Reverse Osmosis starts with an overview of the historic development of the RO membrane, the RO process, and its effect on other membrane separation processes. Other chapters cover the development of nanocomposites of TFC membranes and modern membrane characterization techniques, such as TEM, AFM and PALS, the RO membrane transport model, and RO membrane fouling. The book also describes, in detail, experimental methods for setting up RO experiments, RO membrane modules, RO membrane systems, and desalination and water treatment by RO. Applications in food, pharmaceutical, chemical, biochemical, petroleum and petrochemical industries are also summarized. Other sections cover the development of RO membranes with high thermal and chemical stability, attempts to develop polymeric or inorganic membranes, and hybrid processes where RO is combined with forward osmosis (FO) or membrane distillation (MD). - Written by renowned experts in the field who have complementary expertise - Provides an in-depth discussion of reverse osmosis transport based on nano-level membrane structure - Comprehensively reviews recent progresses in novel reverse osmosis membrane development
Seawater Pretreatment
Author: Nikolay Voutchkov
Publisher:
ISBN: 9789744017956
Category : Membranes (Technology).
Languages : en
Pages : 173
Book Description
Publisher:
ISBN: 9789744017956
Category : Membranes (Technology).
Languages : en
Pages : 173
Book Description