Dynamic Linear Models with R PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Dynamic Linear Models with R PDF full book. Access full book title Dynamic Linear Models with R by Giovanni Petris. Download full books in PDF and EPUB format.

Dynamic Linear Models with R

Dynamic Linear Models with R PDF Author: Giovanni Petris
Publisher: Springer Science & Business Media
ISBN: 0387772383
Category : Mathematics
Languages : en
Pages : 258

Book Description
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Dynamic Linear Models with R

Dynamic Linear Models with R PDF Author: Giovanni Petris
Publisher: Springer Science & Business Media
ISBN: 0387772383
Category : Mathematics
Languages : en
Pages : 258

Book Description
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Structural Vector Autoregressive Analysis

Structural Vector Autoregressive Analysis PDF Author: Lutz Kilian
Publisher: Cambridge University Press
ISBN: 1107196574
Category : Business & Economics
Languages : en
Pages : 757

Book Description
This book discusses the econometric foundations of structural vector autoregressive modeling, as used in empirical macroeconomics, finance, and related fields.

Applied Time Series Econometrics

Applied Time Series Econometrics PDF Author: Helmut Lütkepohl
Publisher: Cambridge University Press
ISBN: 1139454730
Category : Business & Economics
Languages : en
Pages : 351

Book Description
Time series econometrics is a rapidly evolving field. Particularly, the cointegration revolution has had a substantial impact on applied analysis. Hence, no textbook has managed to cover the full range of methods in current use and explain how to proceed in applied domains. This gap in the literature motivates the present volume. The methods are sketched out, reminding the reader of the ideas underlying them and giving sufficient background for empirical work. The treatment can also be used as a textbook for a course on applied time series econometrics. Topics include: unit root and cointegration analysis, structural vector autoregressions, conditional heteroskedasticity and nonlinear and nonparametric time series models. Crucial to empirical work is the software that is available for analysis. New methodology is typically only gradually incorporated into existing software packages. Therefore a flexible Java interface has been created, allowing readers to replicate the applications and conduct their own analyses.

Modelling Longitudinal and Spatially Correlated Data

Modelling Longitudinal and Spatially Correlated Data PDF Author: Timothy G. Gregoire
Publisher: Springer Science & Business Media
ISBN: 1461206995
Category : Mathematics
Languages : en
Pages : 404

Book Description
Correlated data arise in numerous contexts across a wide spectrum of subject-matter disciplines. Modeling such data present special challenges and opportunities that have received increasing scrutiny by the statistical community in recent years. In October 1996 a group of 210 statisticians and other scientists assembled on the small island of Nantucket, U. S. A. , to present and discuss new developments relating to Modelling Longitudinal and Spatially Correlated Data: Methods, Applications, and Future Direc tions. Its purpose was to provide a cross-disciplinary forum to explore the commonalities and meaningful differences in the source and treatment of such data. This volume is a compilation of some of the important invited and volunteered presentations made during that conference. The three days and evenings of oral and displayed presentations were arranged into six broad thematic areas. The session themes, the invited speakers and the topics they addressed were as follows: • Generalized Linear Models: Peter McCullagh-"Residual Likelihood in Linear and Generalized Linear Models" • Longitudinal Data Analysis: Nan Laird-"Using the General Linear Mixed Model to Analyze Unbalanced Repeated Measures and Longi tudinal Data" • Spatio---Temporal Processes: David R. Brillinger-"Statistical Analy sis of the Tracks of Moving Particles" • Spatial Data Analysis: Noel A. Cressie-"Statistical Models for Lat tice Data" • Modelling Messy Data: Raymond J. Carroll-"Some Results on Gen eralized Linear Mixed Models with Measurement Error in Covariates" • Future Directions: Peter J.

Advances in Econometrics: Volume 1

Advances in Econometrics: Volume 1 PDF Author: Truman F. Bewley
Publisher: Cambridge University Press
ISBN: 9780521467261
Category : Business & Economics
Languages : en
Pages : 332

Book Description
With its focus on econometrics, this volume contains key papers delivered at the Fifth World Congress in 1985.

Introduction to Multiple Time Series Analysis

Introduction to Multiple Time Series Analysis PDF Author: Helmut Lütkepohl
Publisher: Springer Science & Business Media
ISBN: 3662026910
Category : Business & Economics
Languages : en
Pages : 556

Book Description


Forecasting, Structural Time Series Models and the Kalman Filter

Forecasting, Structural Time Series Models and the Kalman Filter PDF Author: Andrew C. Harvey
Publisher: Cambridge University Press
ISBN: 9780521405737
Category : Business & Economics
Languages : en
Pages : 574

Book Description
A synthesis of concepts and materials, that ordinarily appear separately in time series and econometrics literature, presents a comprehensive review of theoretical and applied concepts in modeling economic and social time series.

Financial and Macroeconomic Connectedness

Financial and Macroeconomic Connectedness PDF Author: Francis X. Diebold
Publisher: Oxford University Press
ISBN: 0199338310
Category : Business & Economics
Languages : en
Pages : 285

Book Description
Connections among different assets, asset classes, portfolios, and the stocks of individual institutions are critical in examining financial markets. Interest in financial markets implies interest in underlying macroeconomic fundamentals. In Financial and Macroeconomic Connectedness, Frank Diebold and Kamil Yilmaz propose a simple framework for defining, measuring, and monitoring connectedness, which is central to finance and macroeconomics. These measures of connectedness are theoretically rigorous yet empirically relevant. The approach to connectedness proposed by the authors is intimately related to the familiar econometric notion of variance decomposition. The full set of variance decompositions from vector auto-regressions produces the core of the 'connectedness table.' The connectedness table makes clear how one can begin with the most disaggregated pair-wise directional connectedness measures and aggregate them in various ways to obtain total connectedness measures. The authors also show that variance decompositions define weighted, directed networks, so that these proposed connectedness measures are intimately related to key measures of connectedness used in the network literature. After describing their methods in the first part of the book, the authors proceed to characterize daily return and volatility connectedness across major asset (stock, bond, foreign exchange and commodity) markets as well as the financial institutions within the U.S. and across countries since late 1990s. These specific measures of volatility connectedness show that stock markets played a critical role in spreading the volatility shocks from the U.S. to other countries. Furthermore, while the return connectedness across stock markets increased gradually over time the volatility connectedness measures were subject to significant jumps during major crisis events. This book examines not only financial connectedness, but also real fundamental connectedness. In particular, the authors show that global business cycle connectedness is economically significant and time-varying, that the U.S. has disproportionately high connectedness to others, and that pairwise country connectedness is inversely related to bilateral trade surpluses.

Time Series Econometrics

Time Series Econometrics PDF Author: Pierre Perron
Publisher:
ISBN: 9789813237896
Category : Econometrics
Languages : en
Pages :

Book Description
Part I. Unit roots and trend breaks -- Part II. Structural change

Nonlinear Time Series

Nonlinear Time Series PDF Author: Jiti Gao
Publisher: CRC Press
ISBN: 1420011219
Category : Mathematics
Languages : en
Pages : 249

Book Description
Useful in the theoretical and empirical analysis of nonlinear time series data, semiparametric methods have received extensive attention in the economics and statistics communities over the past twenty years. Recent studies show that semiparametric methods and models may be applied to solve dimensionality reduction problems arising from using fully