Oxygen and Dissolved Organic Carbon Dynamics in Permeable Coastal Sediments PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Oxygen and Dissolved Organic Carbon Dynamics in Permeable Coastal Sediments PDF full book. Access full book title Oxygen and Dissolved Organic Carbon Dynamics in Permeable Coastal Sediments by Lindsay Chipman. Download full books in PDF and EPUB format.

Oxygen and Dissolved Organic Carbon Dynamics in Permeable Coastal Sediments

Oxygen and Dissolved Organic Carbon Dynamics in Permeable Coastal Sediments PDF Author: Lindsay Chipman
Publisher:
ISBN:
Category : Marine biology
Languages : en
Pages :

Book Description
ABSTRACT: A large fraction of the continental shelf is covered by permeable sediments that are flushed by wave, wind, and tide generated bottom currents. Elevated dissolved organic carbon (DOC) concentrations in coastal zones, a diverse and abundant sediment microbial community, and advective filtration of seawater through the surface layers of permeable sediments, make these environments important zones for the cycling of organic matter. This research investigates the role of permeable sediments in the dynamics of two central components of the carbon cycle: DOC and oxygen. In Chapter 2, published in Limnology & Oceanography, I investigate decomposition rates and compositional changes of DOC when filtered through permeable sediments contained in laboratory column reactors. Substantial amounts of DOC were mineralized in the sediments and could be linked to incorporation by aerobic and anaerobic microbes. In DOC pore-water profiles measured at two study sites with permeable sediment, we observed a concave shape of the profiles in the upper 10 cm of permeable sediment resulting from transport of DOC with advective pore water flows into the sand, and DOC decomposition in the subsurface layers. We found that the flushed sand layer between the water column and deeper anoxic sediment layers acts as an effective DOC filter, with subsurface horizontal pore-water flows promoting decomposition of DOC, suggesting that permeable sediments play a key role in the cycling of organic matter. In Chapter 3, submitted to Continental Shelf Research, I use the findings of Chapter 2 for the interpretation of field time series data of DOC, DIC, and TN concentrations in the water column and coastal sediment pore waters. We use these time series to investigate the spatial and temporal dynamics of dissolved organic matter and how benthic pelagic coupling influences DOC concentrations in the permeable sediments. Our results reveal that DOC in the upper layer (0-12 cm) of the shallow sands is controlled by benthic-pelagic coupling facilitated by advective pore water filtration modulated by the regional wave climate. For the quantification of oxygen fluxes in the permeable coastal sands resulting from the benthic organic matter production and consumption and the current-induced sediment flushing, I deployed the eddy correlation technique. In order to make this technique more suitable for our shallow coastal zone with relatively rough hydrodynamic conditions (as compared to deeper marine environments), we adapted existing eddy correlation instruments for use with more durable and repairable oxygen optodes. This development is described in detail in Chapter 4 that has been submitted for publication in Limnology and Oceanography Methods. Our results show that optodes have a comparable response time to electrodes, produce similar fluxes in field deployments, and are a viable alternative for use with the eddy correlation measurement in coastal environments with strong currents and wave action. These hydrodynamic conditions are an important factor controlling production and decomposition processes at the sediment-water interface and within the sediment because they can largely control the availability of DOC and oxygen to microbial communities in the sediments. In Chapter 5, which is presently is being prepared for submission to Marine Ecology - Progress Series, we investigate the relationship between flow, wave height, DOC concentration, temperature, light, and the benthic oxygen fluxes. The results reveal a large range of production and consumption rates in the permeable coastal sediments with distinct seasonal changes. The latter are caused by the availability of degradable organic matter and the magnitude of the pore water flushing process that carries these organic substrates and oxygen into the permeable coastal sands. We conclude that the highly degradable DOC produced by pelagic and benthic primary producers enhances water column - sediment biogeochemical coupling in the coastal zone thereby increasing the contribution of the sediment surface layer in the cycling of carbon and nutrients.

Oxygen and Dissolved Organic Carbon Dynamics in Permeable Coastal Sediments

Oxygen and Dissolved Organic Carbon Dynamics in Permeable Coastal Sediments PDF Author: Lindsay Chipman
Publisher:
ISBN:
Category : Marine biology
Languages : en
Pages :

Book Description
ABSTRACT: A large fraction of the continental shelf is covered by permeable sediments that are flushed by wave, wind, and tide generated bottom currents. Elevated dissolved organic carbon (DOC) concentrations in coastal zones, a diverse and abundant sediment microbial community, and advective filtration of seawater through the surface layers of permeable sediments, make these environments important zones for the cycling of organic matter. This research investigates the role of permeable sediments in the dynamics of two central components of the carbon cycle: DOC and oxygen. In Chapter 2, published in Limnology & Oceanography, I investigate decomposition rates and compositional changes of DOC when filtered through permeable sediments contained in laboratory column reactors. Substantial amounts of DOC were mineralized in the sediments and could be linked to incorporation by aerobic and anaerobic microbes. In DOC pore-water profiles measured at two study sites with permeable sediment, we observed a concave shape of the profiles in the upper 10 cm of permeable sediment resulting from transport of DOC with advective pore water flows into the sand, and DOC decomposition in the subsurface layers. We found that the flushed sand layer between the water column and deeper anoxic sediment layers acts as an effective DOC filter, with subsurface horizontal pore-water flows promoting decomposition of DOC, suggesting that permeable sediments play a key role in the cycling of organic matter. In Chapter 3, submitted to Continental Shelf Research, I use the findings of Chapter 2 for the interpretation of field time series data of DOC, DIC, and TN concentrations in the water column and coastal sediment pore waters. We use these time series to investigate the spatial and temporal dynamics of dissolved organic matter and how benthic pelagic coupling influences DOC concentrations in the permeable sediments. Our results reveal that DOC in the upper layer (0-12 cm) of the shallow sands is controlled by benthic-pelagic coupling facilitated by advective pore water filtration modulated by the regional wave climate. For the quantification of oxygen fluxes in the permeable coastal sands resulting from the benthic organic matter production and consumption and the current-induced sediment flushing, I deployed the eddy correlation technique. In order to make this technique more suitable for our shallow coastal zone with relatively rough hydrodynamic conditions (as compared to deeper marine environments), we adapted existing eddy correlation instruments for use with more durable and repairable oxygen optodes. This development is described in detail in Chapter 4 that has been submitted for publication in Limnology and Oceanography Methods. Our results show that optodes have a comparable response time to electrodes, produce similar fluxes in field deployments, and are a viable alternative for use with the eddy correlation measurement in coastal environments with strong currents and wave action. These hydrodynamic conditions are an important factor controlling production and decomposition processes at the sediment-water interface and within the sediment because they can largely control the availability of DOC and oxygen to microbial communities in the sediments. In Chapter 5, which is presently is being prepared for submission to Marine Ecology - Progress Series, we investigate the relationship between flow, wave height, DOC concentration, temperature, light, and the benthic oxygen fluxes. The results reveal a large range of production and consumption rates in the permeable coastal sediments with distinct seasonal changes. The latter are caused by the availability of degradable organic matter and the magnitude of the pore water flushing process that carries these organic substrates and oxygen into the permeable coastal sands. We conclude that the highly degradable DOC produced by pelagic and benthic primary producers enhances water column - sediment biogeochemical coupling in the coastal zone thereby increasing the contribution of the sediment surface layer in the cycling of carbon and nutrients.

Degradation of Dissolved Organic Carbon in Permeable Coastal Sediments

Degradation of Dissolved Organic Carbon in Permeable Coastal Sediments PDF Author: Lindsay Chipman
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Approximately 70% of the shelf sediments are relict sands (Riggs et al., 1996), and in the shallow coastal zone a large fraction of these sands are highly permeable and permit circulation of water through the interstitial space (Marinelli et al., 1998; Huettel et al., 1996; Huettel and Gust, 1992). In this shallow environment, strong boundary currents caused by wind, waves, and tides force bottom water loaded with DOC through the sediment ripples and upper surface layers of the sand. Abundance and diversity of microbes in permeable sediments exceed that of the overlying water column (Hunter et al., 2006), and the question arises whether the filtration through the sediment affects the decomposition of DOC and water column DOC dynamics. I tested the working hypotheses that rapid DOC transport along relatively short pathways through the sand significantly enhances the degradation of the DOC and that the sedimentary flushing tightly links sedimentary and water column DOC concentrations.

Oxygen Consumption Rates in Permeable Gulf of Mexico Sediments

Oxygen Consumption Rates in Permeable Gulf of Mexico Sediments PDF Author: Matthias Laschet
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
ABSTRACT: The objective of this study was to investigate oxygen consumption rates in permeable Gulf coast sediments and their link to changes in the water and sediment chlorophyll concentrations. The investigation was initiated to improve our understanding of the biogeochemical functioning of these sediments and their role in the coastal cycling of organic matter. Although sand is the most abundant sediment type on the continental shelf, the decomposition process in sediments affected by advective pore water exchange is not understood. Boundary-layer flows transport organic matter, nutrients and electron acceptors into nearshore permeable sediments thereby affecting benthic photosynthesis, microbial activity and oxygen dynamics. A series of advection chamber measurements was used to determine temporal and spatial variations in O2 consumption at two study sites located in the Northeastern Gulf of Mexico, with one site located at the exposed south side of St. George Island and the other more sheltered site in Apalachicola Bay. A time series analyzing sediment cores and overlying water samples provided data on the temporal and spatial dynamics of sedimentary and water column chlorophyll and oxygen concentrations.

Marine Carbon Biogeochemistry

Marine Carbon Biogeochemistry PDF Author: Jack J. Middelburg
Publisher: Springer
ISBN: 3030108228
Category : Science
Languages : en
Pages : 118

Book Description
This open access book discusses biogeochemical processes relevant to carbon and aims to provide readers, graduate students and researchers, with insight into the functioning of marine ecosystems. A carbon centric approach has been adopted, but other elements are included where relevant or needed. The book focuses on concepts and quantitative understanding of primary production, organic matter mineralization and sediment biogeochemistry. The impact of biogeochemical processes on inorganic carbon dynamics and organic matter transformation are also discussed.

Treatise on Estuarine and Coastal Science

Treatise on Estuarine and Coastal Science PDF Author:
Publisher: Academic Press
ISBN: 0080878857
Category : Science
Languages : en
Pages : 4604

Book Description
The study of estuaries and coasts has seen enormous growth in recent years, since changes in these areas have a large effect on the food chain, as well as on the physics and chemistry of the ocean. As the coasts and river banks around the world become more densely populated, the pressure on these ecosystems intensifies, putting a new focus on environmental, socio-economic and policy issues. Written by a team of international expert scientists, under the guidance of Chief Editors Eric Wolanski and Donald McClusky, the Treatise on Estuarine and Coastal Science, Ten Volume Set examines topics in depth, and aims to provide a comprehensive scientific resource for all professionals and students in the area of estuarine and coastal science Most up-to-date reference for system-based coastal and estuarine science and management, from the inland watershed to the ocean shelf Chief editors have assembled a world-class team of volume editors and contributing authors Approach focuses on the physical, biological, chemistry, ecosystem, human, ecological and economics processes, to show how to best use multidisciplinary science to ensure earth's sustainability Provides a comprehensive scientific resource for all professionals and students in the area of estuarine and coastal science Features up-to-date chapters covering a full range of topics

Biogeochemistry of Marine Dissolved Organic Matter

Biogeochemistry of Marine Dissolved Organic Matter PDF Author: Dennis A. Hansell
Publisher: Academic Press
ISBN: 0124071538
Category : Science
Languages : en
Pages : 712

Book Description
Marine dissolved organic matter (DOM) is a complex mixture of molecules found throughout the world's oceans. It plays a key role in the export, distribution, and sequestration of carbon in the oceanic water column, posited to be a source of atmospheric climate regulation. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, focuses on the chemical constituents of DOM and its biogeochemical, biological, and ecological significance in the global ocean, and provides a single, unique source for the references, information, and informed judgments of the community of marine biogeochemists. Presented by some of the world's leading scientists, this revised edition reports on the major advances in this area and includes new chapters covering the role of DOM in ancient ocean carbon cycles, the long term stability of marine DOM, the biophysical dynamics of DOM, fluvial DOM qualities and fate, and the Mediterranean Sea. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, is an extremely useful resource that helps people interested in the largest pool of active carbon on the planet (DOC) get a firm grounding on the general paradigms and many of the relevant references on this topic. Features up-to-date knowledge of DOM, including five new chapters The only published work to synthesize recent research on dissolved organic carbon in the Mediterranean Sea Includes chapters that address inputs from freshwater terrestrial DOM

Dynamics of Dissolved Organic Carbon and Total Dissolved Nitrogen in Maryland's Coastal Bays

Dynamics of Dissolved Organic Carbon and Total Dissolved Nitrogen in Maryland's Coastal Bays PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


The Role of Labile Dissolved Organic Carbon in Influencing Fluxes Across the Sediment-water Interface

The Role of Labile Dissolved Organic Carbon in Influencing Fluxes Across the Sediment-water Interface PDF Author: Deborah J. Read
Publisher:
ISBN:
Category : Aquatic ecology
Languages : en
Pages : 156

Book Description
Sediment diagenesis in aquatic systems is usually understood to be controlled by the concentrations of both organic carbon and the oxidant. However, the concept that sediment respiration may be limited by the supply of organic carbon, even in systems with moderate concentrations of organic carbon in the water column, has yet to be fully explored. Typically we assume that a direct coupling between water column and sediment diagenesis processes occurs and the chemical evolution of porewater and surface water are linked through fluxes of chemical species across the sediment-water interface. While the dynamics of supply of particulate organic carbon (POC) to the sediments via plankton deposition and resuspension, has previously been examined, the fate of dissolved organic carbon (DOC) once in the sediments, has rarely been investigated. A series of experiments comprising batch tests, microcosms and sediment cores were conducted on sediment and water from four diverse field sites in which sediment respiration was considered to be carbon limited. Three sites were oligotrophic, acidic lakes and the fourth an oligotrophic coastal embayment. During each experiment dissolved organic carbon was added and measurements were undertaken of solutes that were considered participants in diagenetic processes. While each system differed in its chemical, biological and geological makeup, a key commonality was the rapid onset of anoxic conditions in the sediments irrespective of the overlying water oxygen concentrations, indicating lack of direct coupling between biogeochemical processes in the water column and sediments. Also, similar apparent DOC remineralisation rates were observed, measured solute fluxes after the addition of DOC indicated adherence to the ecological redox sequence, and increased ammonium concentrations were measured in the overlying waters of the acidic microcosms. In marine system experiments it was noted that diagenetic respiration, as indicated by decreasing concentrations of oxygen in the overlying water, increased rapidly after labile DOC was added. To explore the influence of geochemical processes on sediment respiration, a diagenetic model was tested against the laboratory data. The model was able to capture the rapid changes observed in the microcosms after addition of DOC in both the marine and acidic systems experiments. The model has the potential to serve as an essential tool for quantifying sediment organic matter decomposition and dissolved chemical fluxes. This work has focussed our attention on the control of DOC availability on sediment respiration and thus its ultimate control on solute fluxes across the sediment water interface. The results highlight the need to understand and quantify the supply of DOC to the sediment (as POC or already as the dissolved form), its transport through the sediment and its eventual remineralisation. This understanding is critical for improved management of aquatic systems, possibly even in systems where water column organic carbon is plentiful but sediment respiration is constrained by high organic carbon turnover rates in the water column and a resulting low flux of organic carbon to the sediment.

Organic Matter Cycling and Nutrient Dynamics in Marine Sediments

Organic Matter Cycling and Nutrient Dynamics in Marine Sediments PDF Author: Angelos K. Hannides
Publisher:
ISBN:
Category : Biogeochemical cycles
Languages : en
Pages : 878

Book Description
This dissertation explores two recently recognized pathways of organic matter supply to marine sediments and their impact on sedimentary biogeochemistry: The entrapment and decomposition of particulate organic matter in permeable sediments and the resulting nutrient dynamics were investigated with a specially designed experimental laboratory microcosm that allows permeable sediment incubation under controlled physical forcing. Microcosm generated enhanced solute transport rates were roughly proportional to sediment column permeability. Comparison with field observations revealed that the enhanced transport rates induced by the experimental conditions were lower than those observed in the field, and this was also reflected in the enhanced buildup of pore water nutrients relative to concentrations in field sediments. Particulate organic matter and nutrient enrichment experiments, conducted with the microcosm, demonstrated the rapid uptake of both particles and solutes by the permeable sediment column under physical forcing, the rapid decomposition of the removed particles, and the lack of regenerated nutrient build-up. Nutrient enrichment experiments with sediment plug chambers demonstrated the rapid uptake and retention of nutrients by surface permeable sediments, as well as the loss of nitrogen though benthic denitrification in sediment grain microzones. The processing of large organic matter packages on the deepsea floor by deep-sea communities was investigated using natural and experimental whale, kelp and wood falls in the California Borderland Basins region, focusing on their quality and its impact on sedimentary organic enrichment and redox shifts. Labile organic material generated by the processing of whale falls and kelp falls generated substantial pore water sulfide levels in impacted sediment, despite a small organic enrichment signal. In contrast, wood derived material input did not result in sulfidic conditions, despite generating very high organic enrichment in impacted sediments, due to its refractory nature. A constructed model incorporating metazoan processing and dispersal of fragmented material revealed that whale fall processing is characterized by higher rates of tissue removal, organic carbon release, and carbon sedimentation rates than wood fall processing. However, organic carbon release rates, when normalized to fall weight, are similar between the two types of falls, due to differences in their carbon content and in absorption rates during metazoan ingestion.

Beach Sediments

Beach Sediments PDF Author: Kelly Lynne Taylor
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 96

Book Description