Oscillation Theory of Delay Differential Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Oscillation Theory of Delay Differential Equations PDF full book. Access full book title Oscillation Theory of Delay Differential Equations by I. Győri. Download full books in PDF and EPUB format.

Oscillation Theory of Delay Differential Equations

Oscillation Theory of Delay Differential Equations PDF Author: I. Győri
Publisher: Clarendon Press
ISBN:
Category : Mathematics
Languages : en
Pages : 392

Book Description
In recent years there has been a resurgence of interest in the study of delay differential equations motivated largely by new applications in physics, biology, ecology, and physiology. The aim of this monograph is to present a reasonably self-contained account of the advances in the oscillation theory of this class of equations. Throughout, the main topics of study are shown in action, with applications to such diverse problems as insect population estimations, logistic equations in ecology, the survival of red blood cells in animals, integro-differential equations, and the motion of the tips of growing plants. The authors begin by reviewing the basic theory of delay differential equations, including the fundamental results of existence and uniqueness of solutions and the theory of the Laplace and z-transforms. Little prior knowledge of the subject is required other than a firm grounding in the main techniques of differential equation theory. As a result, this book provides an invaluable reference to the recent work both for mathematicians and for all those whose research includes the study of this fascinating class of differential equations.

Oscillation Theory of Delay Differential Equations

Oscillation Theory of Delay Differential Equations PDF Author: I. Győri
Publisher: Clarendon Press
ISBN:
Category : Mathematics
Languages : en
Pages : 392

Book Description
In recent years there has been a resurgence of interest in the study of delay differential equations motivated largely by new applications in physics, biology, ecology, and physiology. The aim of this monograph is to present a reasonably self-contained account of the advances in the oscillation theory of this class of equations. Throughout, the main topics of study are shown in action, with applications to such diverse problems as insect population estimations, logistic equations in ecology, the survival of red blood cells in animals, integro-differential equations, and the motion of the tips of growing plants. The authors begin by reviewing the basic theory of delay differential equations, including the fundamental results of existence and uniqueness of solutions and the theory of the Laplace and z-transforms. Little prior knowledge of the subject is required other than a firm grounding in the main techniques of differential equation theory. As a result, this book provides an invaluable reference to the recent work both for mathematicians and for all those whose research includes the study of this fascinating class of differential equations.

Oscillation Theory for Neutral Differential Equations with Delay

Oscillation Theory for Neutral Differential Equations with Delay PDF Author: D.D Bainov
Publisher: CRC Press
ISBN: 9780750301428
Category : Mathematics
Languages : en
Pages : 296

Book Description
With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.

Nonoscillation Theory of Functional Differential Equations with Applications

Nonoscillation Theory of Functional Differential Equations with Applications PDF Author: Ravi P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 1461434556
Category : Mathematics
Languages : en
Pages : 526

Book Description
This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.​

Nonoscillation and Oscillation Theory for Functional Differential Equations

Nonoscillation and Oscillation Theory for Functional Differential Equations PDF Author: Ravi P. Agarwal
Publisher: CRC Press
ISBN: 0203025741
Category : Mathematics
Languages : en
Pages : 400

Book Description
This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential eq

An Introduction to Delay Differential Equations with Applications to the Life Sciences

An Introduction to Delay Differential Equations with Applications to the Life Sciences PDF Author: hal smith
Publisher: Springer Science & Business Media
ISBN: 1441976469
Category : Mathematics
Languages : en
Pages : 178

Book Description
This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.

Fixed Point Theory and Applications

Fixed Point Theory and Applications PDF Author: Ravi P. Agarwal
Publisher: Cambridge University Press
ISBN: 1139433792
Category : Mathematics
Languages : en
Pages : 182

Book Description
This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.

Delay Differential Equations and Applications to Biology

Delay Differential Equations and Applications to Biology PDF Author: Fathalla A. Rihan
Publisher: Springer Nature
ISBN: 9811606269
Category : Mathematics
Languages : en
Pages : 292

Book Description
This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.

Oscillation Theory for Functional Differential Equations

Oscillation Theory for Functional Differential Equations PDF Author: Lynn Erbe
Publisher: Routledge
ISBN: 135142632X
Category : Mathematics
Languages : en
Pages : 504

Book Description
Examines developments in the oscillatory and nonoscillatory properties of solutions for functional differential equations, presenting basic oscillation theory as well as recent results. The book shows how to extend the techniques for boundary value problems of ordinary differential equations to those of functional differential equations.

Delay Differential Equations

Delay Differential Equations PDF Author: Yang Kuang
Publisher: Academic Press
ISBN: 0080960022
Category : Mathematics
Languages : en
Pages : 413

Book Description
Delay Differential Equations emphasizes the global analysis of full nonlinear equations or systems. The book treats both autonomous and nonautonomous systems with various delays. Key topics addressed are the possible delay influence on the dynamics of the system, such as stability switching as time delay increases, the long time coexistence of populations, and the oscillatory aspects of the dynamics. The book also includes coverage of the interplay of spatial diffusion and time delays in some diffusive delay population models. The treatment presented in this monograph will be of great value in the study of various classes of DDEs and their multidisciplinary applications.

Dynamic Equations on Time Scales

Dynamic Equations on Time Scales PDF Author: Martin Bohner
Publisher: Springer Science & Business Media
ISBN: 1461202019
Category : Mathematics
Languages : en
Pages : 365

Book Description
On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.