HCI in Business, Government and Organizations

HCI in Business, Government and Organizations PDF Author: Fiona Nah
Publisher: Springer Nature
ISBN: 3031360494
Category : Computers
Languages : en
Pages : 442

Book Description
This two-volume set of HCIBGO 2023, constitutes the refereed proceedings of the 10h International Conference on HCI in Business, Government and Organizations, held as Part of the 24th International Conference, HCI International 2023, which took place in July 2023 in Copenhagen, Denmark.The total of 1578 papers and 396 posters included in the HCII 2023 proceedings volumes was carefully reviewed and selected from 7472 submissions. The HCIBGO 2023 proceedings focuses in topics such as artificial intelligence and machine learning, blockchain, service design, live streaming in electronic commerce, visualization, and workplace design.

The Nature of Statistical Learning Theory

The Nature of Statistical Learning Theory PDF Author: Vladimir Vapnik
Publisher: Springer Science & Business Media
ISBN: 1475732643
Category : Mathematics
Languages : en
Pages : 324

Book Description
The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.

Derivative Securities

Derivative Securities PDF Author: Robert A. Jarrow
Publisher: Thomson South-Western
ISBN:
Category : Business & Economics
Languages : en
Pages : 728

Book Description
"Derivative Securities provides a comprehensive and accessible introduction to derivative securities, such as forward contracts, futures contracts, options on assets, options on futures contracts, and credit swaps. It features a new, unified approach to the pricing and hedging of futures and options, and covers diverse areas such as equity, stock index, foreign currency, interest rate and commodity derivatives, as well as swaps and exotic options."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved

Advances in Swarm Intelligence

Advances in Swarm Intelligence PDF Author: Ying Tan
Publisher: Springer
ISBN: 3319938185
Category : Computers
Languages : en
Pages : 589

Book Description
The two-volume set of LNCS 10941 and 10942 constitutes the proceedings of the 9th International Conference on Advances in Swarm Intelligence, ICSI 2018, held in Shanghai, China, in June 2018. The total of 113 papers presented in these volumes was carefully reviewed and selected from 197 submissions. The papers were organized in topical sections namely: multi-agent systems; swarm robotics; fuzzy logic approaches; planning and routing problems; recommendation in social media; predication; classification; finding patterns; image enhancement; deep learning; theories and models of swarm intelligence; ant colony optimization; particle swarm optimization; artificial bee colony algorithms; genetic algorithms; differential evolution; fireworks algorithm; bacterial foraging optimization; artificial immune system; hydrologic cycle optimization; other swarm-based optimization algorithms; hybrid optimization algorithms; multi-objective optimization; large-scale global optimization.

Machine Learning in Finance

Machine Learning in Finance PDF Author: Matthew F. Dixon
Publisher: Springer Nature
ISBN: 3030410684
Category : Business & Economics
Languages : en
Pages : 565

Book Description
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.

How can I get started Investing in the Stock Market

How can I get started Investing in the Stock Market PDF Author: Lokesh Badolia
Publisher: Educreation Publishing
ISBN:
Category : Self-Help
Languages : en
Pages : 63

Book Description
This book is well-researched by the author, in which he has shared the experience and knowledge of some very much experienced and renowned entities from stock market. We want that everybody should have the knowledge regarding the different aspects of stock market, which would encourage people to invest and earn without any fear. This book is just a step forward toward the knowledge of market.

Artificial Intelligence XXXVI

Artificial Intelligence XXXVI PDF Author: Max Bramer
Publisher: Springer Nature
ISBN: 3030348857
Category : Computers
Languages : en
Pages : 500

Book Description
This book constitutes the proceedings of the 39th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, AI 2019, held in Cambridge, UK, in December 2019. The 29 full papers and 14 short papers presented in this volume were carefully reviewed and selected from 49 submissions. The volume includes technical papers presenting new and innovative developments in the field as well as application papers presenting innovative applications of AI techniques in a number of subject domains. The papers are organized in the following topical sections: machine learning; knowledge discovery and data mining; agents, knowledge acquisition and ontologies; medical applications; applications of evolutionary algorithms; machine learning for time series data; applications of machine learning; and knowledge acquisition.

Recent Developments in Data Science and Business Analytics

Recent Developments in Data Science and Business Analytics PDF Author: Madjid Tavana
Publisher: Springer
ISBN: 3319727451
Category : Business & Economics
Languages : en
Pages : 494

Book Description
This edited volume is brought out from the contributions of the research papers presented in the International Conference on Data Science and Business Analytics (ICDSBA- 2017), which was held during September 23-25 2017 in ChangSha, China. As we all know, the field of data science and business analytics is emerging at the intersection of the fields of mathematics, statistics, operations research, information systems, computer science and engineering. Data science and business analytics is an interdisciplinary field about processes and systems to extract knowledge or insights from data. Data science and business analytics employ techniques and theories drawn from many fields including signal processing, probability models, machine learning, statistical learning, data mining, database, data engineering, pattern recognition, visualization, descriptive analytics, predictive analytics, prescriptive analytics, uncertainty modeling, big data, data warehousing, data compression, computer programming, business intelligence, computational intelligence, and high performance computing among others. The volume contains 55 contributions from diverse areas of Data Science and Business Analytics, which has been categorized into five sections, namely: i) Marketing and Supply Chain Analytics; ii) Logistics and Operations Analytics; iii) Financial Analytics. iv) Predictive Modeling and Data Analytics; v) Communications and Information Systems Analytics. The readers shall not only receive the theoretical knowledge about this upcoming area but also cutting edge applications of this domains.

Cognitive Informatics and Soft Computing

Cognitive Informatics and Soft Computing PDF Author: Pradeep Kumar Mallick
Publisher: Springer Nature
ISBN: 9811610568
Category : Technology & Engineering
Languages : en
Pages : 961

Book Description
This book presents best selected research papers presented at the 3rd International Conference on Cognitive Informatics and Soft Computing (CISC 2020), held at Balasore College of Engineering & Technology, Balasore, Odisha, India, from 12 to 13 December 2020. It highlights, in particular, innovative research in the fields of cognitive informatics, cognitive computing, computational intelligence, advanced computing, and hybrid intelligent models and applications. New algorithms and methods in a variety of fields are presented, together with solution-based approaches. The topics addressed include various theoretical aspects and applications of computer science, artificial intelligence, cybernetics, automation control theory, and software engineering.

Metaheuristics in Machine Learning: Theory and Applications

Metaheuristics in Machine Learning: Theory and Applications PDF Author: Diego Oliva
Publisher: Springer Nature
ISBN: 3030705420
Category : Computational intelligence
Languages : en
Pages : 765

Book Description
This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.