Optimized Predictive Models in Health Care Using Machine Learning PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optimized Predictive Models in Health Care Using Machine Learning PDF full book. Access full book title Optimized Predictive Models in Health Care Using Machine Learning by Sandeep Kumar. Download full books in PDF and EPUB format.

Optimized Predictive Models in Health Care Using Machine Learning

Optimized Predictive Models in Health Care Using Machine Learning PDF Author: Sandeep Kumar
Publisher: John Wiley & Sons
ISBN: 1394174624
Category : Computers
Languages : en
Pages : 388

Book Description
OPTIMIZED PREDICTIVE MODELS IN HEALTH CARE USING MACHINE LEARNING This book is a comprehensive guide to developing and implementing optimized predictive models in healthcare using machine learning and is a required resource for researchers, healthcare professionals, and students who wish to know more about real-time applications. The book focuses on how humans and computers interact to ever-increasing levels of complexity and simplicity and provides content on the theory of optimized predictive model design, evaluation, and user diversity. Predictive modeling, a field of machine learning, has emerged as a powerful tool in healthcare for identifying high-risk patients, predicting disease progression, and optimizing treatment plans. By leveraging data from various sources, predictive models can help healthcare providers make informed decisions, resulting in better patient outcomes and reduced costs. Other essential features of the book include: provides detailed guidance on data collection and preprocessing, emphasizing the importance of collecting accurate and reliable data; explains how to transform raw data into meaningful features that can be used to improve the accuracy of predictive models; gives a detailed overview of machine learning algorithms for predictive modeling in healthcare, discussing the pros and cons of different algorithms and how to choose the best one for a specific application; emphasizes validating and evaluating predictive models; provides a comprehensive overview of validation and evaluation techniques and how to evaluate the performance of predictive models using a range of metrics; discusses the challenges and limitations of predictive modeling in healthcare; highlights the ethical and legal considerations that must be considered when developing predictive models and the potential biases that can arise in those models. Audience The book will be read by a wide range of professionals who are involved in healthcare, data science, and machine learning.

Optimized Predictive Models in Health Care Using Machine Learning

Optimized Predictive Models in Health Care Using Machine Learning PDF Author: Sandeep Kumar
Publisher: John Wiley & Sons
ISBN: 1394174624
Category : Computers
Languages : en
Pages : 388

Book Description
OPTIMIZED PREDICTIVE MODELS IN HEALTH CARE USING MACHINE LEARNING This book is a comprehensive guide to developing and implementing optimized predictive models in healthcare using machine learning and is a required resource for researchers, healthcare professionals, and students who wish to know more about real-time applications. The book focuses on how humans and computers interact to ever-increasing levels of complexity and simplicity and provides content on the theory of optimized predictive model design, evaluation, and user diversity. Predictive modeling, a field of machine learning, has emerged as a powerful tool in healthcare for identifying high-risk patients, predicting disease progression, and optimizing treatment plans. By leveraging data from various sources, predictive models can help healthcare providers make informed decisions, resulting in better patient outcomes and reduced costs. Other essential features of the book include: provides detailed guidance on data collection and preprocessing, emphasizing the importance of collecting accurate and reliable data; explains how to transform raw data into meaningful features that can be used to improve the accuracy of predictive models; gives a detailed overview of machine learning algorithms for predictive modeling in healthcare, discussing the pros and cons of different algorithms and how to choose the best one for a specific application; emphasizes validating and evaluating predictive models; provides a comprehensive overview of validation and evaluation techniques and how to evaluate the performance of predictive models using a range of metrics; discusses the challenges and limitations of predictive modeling in healthcare; highlights the ethical and legal considerations that must be considered when developing predictive models and the potential biases that can arise in those models. Audience The book will be read by a wide range of professionals who are involved in healthcare, data science, and machine learning.

Leveraging Data Science for Global Health

Leveraging Data Science for Global Health PDF Author: Leo Anthony Celi
Publisher: Springer Nature
ISBN: 3030479943
Category : Medical
Languages : en
Pages : 471

Book Description
This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare PDF Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385

Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Smart Predictive Healthcare Using Machine Learning Techniques

Smart Predictive Healthcare Using Machine Learning Techniques PDF Author: Dinesh Kumar
Publisher:
ISBN: 9780930384852
Category :
Languages : en
Pages : 0

Book Description


Machine Learning with Health Care Perspective

Machine Learning with Health Care Perspective PDF Author: Vishal Jain
Publisher: Springer Nature
ISBN: 3030408507
Category : Technology & Engineering
Languages : en
Pages : 418

Book Description
This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.

Introduction to Deep Learning for Healthcare

Introduction to Deep Learning for Healthcare PDF Author: Cao Xiao
Publisher: Springer Nature
ISBN: 3030821846
Category : Medical
Languages : en
Pages : 236

Book Description
This textbook presents deep learning models and their healthcare applications. It focuses on rich health data and deep learning models that can effectively model health data. Healthcare data: Among all healthcare technologies, electronic health records (EHRs) had vast adoption and a significant impact on healthcare delivery in recent years. One crucial benefit of EHRs is to capture all the patient encounters with rich multi-modality data. Healthcare data include both structured and unstructured information. Structured data include various medical codes for diagnoses and procedures, lab results, and medication information. Unstructured data contain 1) clinical notes as text, 2) medical imaging data such as X-rays, echocardiogram, and magnetic resonance imaging (MRI), and 3) time-series data such as the electrocardiogram (ECG) and electroencephalogram (EEG). Beyond the data collected during clinical visits, patient self-generated/reported data start to grow thanks to wearable sensors’ increasing use. The authors present deep learning case studies on all data described. Deep learning models: Neural network models are a class of machine learning methods with a long history. Deep learning models are neural networks of many layers, which can extract multiple levels of features from raw data. Deep learning applied to healthcare is a natural and promising direction with many initial successes. The authors cover deep neural networks, convolutional neural networks, recurrent neural networks, embedding methods, autoencoders, attention models, graph neural networks, memory networks, and generative models. It’s presented with concrete healthcare case studies such as clinical predictive modeling, readmission prediction, phenotyping, x-ray classification, ECG diagnosis, sleep monitoring, automatic diagnosis coding from clinical notes, automatic deidentification, medication recommendation, drug discovery (drug property prediction and molecule generation), and clinical trial matching. This textbook targets graduate-level students focused on deep learning methods and their healthcare applications. It can be used for the concepts of deep learning and its applications as well. Researchers working in this field will also find this book to be extremely useful and valuable for their research.

Advanced Prognostic Predictive Modelling in Healthcare Data Analytics

Advanced Prognostic Predictive Modelling in Healthcare Data Analytics PDF Author: Sudipta Roy
Publisher: Springer Nature
ISBN: 9811605386
Category : Technology & Engineering
Languages : en
Pages : 317

Book Description
This book discusses major technical advancements and research findings in the field of prognostic modelling in healthcare image and data analysis. The use of prognostic modelling as predictive models to solve complex problems of data mining and analysis in health care is the feature of this book. The book examines the recent technologies and studies that reached the practical level and becoming available in preclinical and clinical practices in computational intelligence. The main areas of interest covered in this book are highest quality, original work that contributes to the basic science of processing, analysing and utilizing all aspects of advanced computational prognostic modelling in healthcare image and data analysis.

Artificial Intelligence and Machine Learning in Health Care and Medical Sciences

Artificial Intelligence and Machine Learning in Health Care and Medical Sciences PDF Author: Gyorgy J. Simon
Publisher: Springer Nature
ISBN: 3031393554
Category :
Languages : en
Pages : 824

Book Description


Algorithmic Advancements in Discrete Optimization

Algorithmic Advancements in Discrete Optimization PDF Author: Jean A. Pauphilet
Publisher:
ISBN:
Category :
Languages : en
Pages : 253

Book Description
In the next ten years, hospitals will operate like air-traffic control centers whose role is to coordinate care across multiple facilities. Consequently, the future of hospital operations will have three salient characteristics. First, data. The ability to process, analyze and exploit data effectively will become a vital skill for practitioners. Second, a holistic approach, since orchestrating care requires the concurrent optimization of multiple resources, services, and time scales. Third, real-time personalized decisions, to respond to the increasingly closer monitoring of patients. To support this transition and transform our healthcare system towards better outcomes at lower costs, research in operations and analytics should address two concurrent goals: First, develop new methods and algorithms for decision-making in a data-rich environment, which answer key concerns from practitioners and regulators, such as reliability, interpretability, and fairness. Second, put its models and algorithms to the test of practice, to ensure a path towards implementation and impact. Accordingly, this thesis is comprised of two parts. The first three chapters present methodological contributions to the discrete optimization literature, with particular emphasis on problems emerging from machine learning under sparsity. Indeed, the most important operational decision-making problems are by nature discrete and their sizes have increased with the widespread adoption of connected devices and sensors. In particular, in machine learning, the gigantic amount of data now available contrasts with our limited cognitive abilities. Hence, sparse models, i.e., which only involve a small number of variables, are needed to ensure human understanding. The last two chapters present applications and implementation of machine learning and discrete optimization methods to improve operations at a major academic hospital. From raw electronic health records of patients, we build predictive models to predict patient flows and prescriptive models to optimize patient-bed assignment in real-time. More importantly, we implement our models in a 600-bed institution. Our impact is two-fold: methodological and operational. Integrating advanced analytics in their daily operations and building a data-first culture constitutes a major paradigm shift.

An Integrated Machine Learning and Deep Learning Model for Predictive Analysis

An Integrated Machine Learning and Deep Learning Model for Predictive Analysis PDF Author: Karma Gyatso
Publisher: Mohammed Abdul Sattar
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Every year, there are more patients with chronic diseases, and they tend to be younger people as the speed of life hastens aging. This is both a big problem for society's health and a problem for your health. Chronic diseases will significantly impact patients' health and quality of life. The effects of some disorders are permanent and even incurable. This places a significant load on the communities and relatives of the patients. Every year, there are more people with chronic diseases, and many of them are younger because of how fast life is moving. This is a serious problem for both personal health and public health that harms society. Chronic diseases will have a substantial influence on patients' health and quality of life, and many chronic Some illnesses have long-lasting, even incurable, impacts. It will bring an enormous burden to the family and community of the patient. In recent years, there is considerable progress has been made in the treatment of illness, and this has had a big impact on the results for chronic diseases, including the monitoring of therapy and clinical diagnosis, amongst other things. The large amounts of obscure health data will be analyzed to extract previously unknown and useful information as well as predict future trends. Corporations are now overwhelmed by the amount of data contained in database systems, consisting of unstructured data such as pictures, video, and sensor data. To discover the data trends and prediction of the scopes, deep learning, and machine learning algorithms are utilized in this case, along with other optimization techniques. We employed a variety of machine learning algorithms for these strategies, including SVM, neural networks, and linear and nonlinear regression techniques. Then, prescriptive analytics may apply the knowledge gained from predictive analytics to prescribe actions based on predicted findings. Machine learning is a type of predictive analytics that helps enterprises move up the business intelligence maturity curve by expanding their usage of predictive analytics to include autonomous, forward-looking decision support instead of just descriptive analytics focusing on the past. Although the technology has been there for a while, many businesses are now taking a fresh look at it due to the excitement surrounding new methods and goods. Machine learning-based analytical solutions frequently function in real-time, giving business a new dimension. Real-time analytics provides information to staff "on the front lines" to improve performance hour-by-hour. However, older models will still provide important reports and analyses to senior decision-makers. Machine learning, a branch of artificial intelligence, train machines to use certain algorithms to analyse, learn from, and provide predictions and recommendations from massive volumes of data. Without human interaction, predictive models may adjust to new data and learn from past iterations to make decisions and outcomes that are ever more consistent and trustworthy.