Author: Bhabesh Deka
Publisher: Springer
ISBN: 9811335974
Category : Technology & Engineering
Languages : en
Pages : 133
Book Description
This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need for the CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly useful for researchers who have just entered into the exciting field of CS-MRI and would like to quickly go through the developments to date without diving into the detailed mathematical analysis. Finally, it also discusses recent trends and future research directions for implementation of CS-MRI in clinical practice, particularly in Bio- and Neuro-informatics applications.
Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms
Author: Bhabesh Deka
Publisher: Springer
ISBN: 9811335974
Category : Technology & Engineering
Languages : en
Pages : 133
Book Description
This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need for the CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly useful for researchers who have just entered into the exciting field of CS-MRI and would like to quickly go through the developments to date without diving into the detailed mathematical analysis. Finally, it also discusses recent trends and future research directions for implementation of CS-MRI in clinical practice, particularly in Bio- and Neuro-informatics applications.
Publisher: Springer
ISBN: 9811335974
Category : Technology & Engineering
Languages : en
Pages : 133
Book Description
This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need for the CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly useful for researchers who have just entered into the exciting field of CS-MRI and would like to quickly go through the developments to date without diving into the detailed mathematical analysis. Finally, it also discusses recent trends and future research directions for implementation of CS-MRI in clinical practice, particularly in Bio- and Neuro-informatics applications.
Compressed Sensing for Magnetic Resonance Image Reconstruction
Author: Angshul Majumdar
Publisher: Cambridge University Press
ISBN: 1316673928
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
Expecting the reader to have some basic training in liner algebra and optimization, the book begins with a general discussion on CS techniques and algorithms. It moves on to discussing single channel static MRI, the most common modality in clinical studies. It then takes up multi-channel MRI and the interesting challenges consequently thrown up in signal reconstruction. Off-line and on-line techniques in dynamic MRI reconstruction are visited. Towards the end the book broadens the subject by discussing how CS is being applied to other areas of biomedical signal processing like X-ray, CT and EEG acquisition. The emphasis throughout is on qualitative understanding of the subject rather than on quantitative aspects of mathematical forms. The book is intended for MRI engineers interested in the brass tacks of image formation; medical physicists interested in advanced techniques in image reconstruction; and mathematicians or signal processing engineers.
Publisher: Cambridge University Press
ISBN: 1316673928
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
Expecting the reader to have some basic training in liner algebra and optimization, the book begins with a general discussion on CS techniques and algorithms. It moves on to discussing single channel static MRI, the most common modality in clinical studies. It then takes up multi-channel MRI and the interesting challenges consequently thrown up in signal reconstruction. Off-line and on-line techniques in dynamic MRI reconstruction are visited. Towards the end the book broadens the subject by discussing how CS is being applied to other areas of biomedical signal processing like X-ray, CT and EEG acquisition. The emphasis throughout is on qualitative understanding of the subject rather than on quantitative aspects of mathematical forms. The book is intended for MRI engineers interested in the brass tacks of image formation; medical physicists interested in advanced techniques in image reconstruction; and mathematicians or signal processing engineers.
Magnetic Resonance Image Reconstruction
Author: Mehmet Akcakaya
Publisher: Academic Press
ISBN: 012822746X
Category : Science
Languages : en
Pages : 518
Book Description
Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. - Explains the underlying principles of MRI reconstruction, along with the latest research - Gives example codes for some of the methods presented - Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction
Publisher: Academic Press
ISBN: 012822746X
Category : Science
Languages : en
Pages : 518
Book Description
Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. - Explains the underlying principles of MRI reconstruction, along with the latest research - Gives example codes for some of the methods presented - Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction
Algorithms for Sparsity-Constrained Optimization
Author: Sohail Bahmani
Publisher: Springer Science & Business Media
ISBN: 3319018817
Category : Technology & Engineering
Languages : en
Pages : 124
Book Description
This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a "greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models.
Publisher: Springer Science & Business Media
ISBN: 3319018817
Category : Technology & Engineering
Languages : en
Pages : 124
Book Description
This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a "greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models.
A Mathematical Introduction to Compressive Sensing
Author: Simon Foucart
Publisher: Springer Science & Business Media
ISBN: 0817649484
Category : Computers
Languages : en
Pages : 634
Book Description
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
Publisher: Springer Science & Business Media
ISBN: 0817649484
Category : Computers
Languages : en
Pages : 634
Book Description
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
Compressed Sensing
Author: Yonina C. Eldar
Publisher: Cambridge University Press
ISBN: 1107394392
Category : Technology & Engineering
Languages : en
Pages : 557
Book Description
Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting theoretical advances and a range of applications, as well as outlining numerous remaining research challenges. After a thorough review of the basic theory, many cutting-edge techniques are presented, including advanced signal modeling, sub-Nyquist sampling of analog signals, non-asymptotic analysis of random matrices, adaptive sensing, greedy algorithms and use of graphical models. All chapters are written by leading researchers in the field, and consistent style and notation are utilized throughout. Key background information and clear definitions make this an ideal resource for researchers, graduate students and practitioners wanting to join this exciting research area. It can also serve as a supplementary textbook for courses on computer vision, coding theory, signal processing, image processing and algorithms for efficient data processing.
Publisher: Cambridge University Press
ISBN: 1107394392
Category : Technology & Engineering
Languages : en
Pages : 557
Book Description
Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting theoretical advances and a range of applications, as well as outlining numerous remaining research challenges. After a thorough review of the basic theory, many cutting-edge techniques are presented, including advanced signal modeling, sub-Nyquist sampling of analog signals, non-asymptotic analysis of random matrices, adaptive sensing, greedy algorithms and use of graphical models. All chapters are written by leading researchers in the field, and consistent style and notation are utilized throughout. Key background information and clear definitions make this an ideal resource for researchers, graduate students and practitioners wanting to join this exciting research area. It can also serve as a supplementary textbook for courses on computer vision, coding theory, signal processing, image processing and algorithms for efficient data processing.
Pattern Recognition and Machine Intelligence
Author: Bhabesh Deka
Publisher: Springer Nature
ISBN: 3030348725
Category : Computers
Languages : en
Pages : 623
Book Description
The two-volume set of LNCS 11941 and 11942 constitutes the refereed proceedings of the 8th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2019, held in Tezpur, India, in December 2019. The 131 revised full papers presented were carefully reviewed and selected from 341 submissions. They are organized in topical sections named: Pattern Recognition; Machine Learning; Deep Learning; Soft and Evolutionary Computing; Image Processing; Medical Image Processing; Bioinformatics and Biomedical Signal Processing; Information Retrieval; Remote Sensing; Signal and Video Processing; and Smart and Intelligent Sensors.
Publisher: Springer Nature
ISBN: 3030348725
Category : Computers
Languages : en
Pages : 623
Book Description
The two-volume set of LNCS 11941 and 11942 constitutes the refereed proceedings of the 8th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2019, held in Tezpur, India, in December 2019. The 131 revised full papers presented were carefully reviewed and selected from 341 submissions. They are organized in topical sections named: Pattern Recognition; Machine Learning; Deep Learning; Soft and Evolutionary Computing; Image Processing; Medical Image Processing; Bioinformatics and Biomedical Signal Processing; Information Retrieval; Remote Sensing; Signal and Video Processing; and Smart and Intelligent Sensors.
Current and Future Role of Artificial Intelligence in Cardiac Imaging
Author: Steffen Erhard Petersen
Publisher: Frontiers Media SA
ISBN: 2889660583
Category : Medical
Languages : en
Pages : 138
Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Publisher: Frontiers Media SA
ISBN: 2889660583
Category : Medical
Languages : en
Pages : 138
Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Compressed Sensing for Engineers
Author: Angshul Majumdar
Publisher: CRC Press
ISBN: 1351261347
Category : Technology & Engineering
Languages : en
Pages : 225
Book Description
Compressed Sensing (CS) in theory deals with the problem of recovering a sparse signal from an under-determined system of linear equations. The topic is of immense practical significance since all naturally occurring signals can be sparsely represented in some domain. In recent years, CS has helped reduce scan time in Magnetic Resonance Imaging (making scans more feasible for pediatric and geriatric subjects) and has also helped reduce the health hazard in X-Ray Computed CT. This book is a valuable resource suitable for an engineering student in signal processing and requires a basic understanding of signal processing and linear algebra. Covers fundamental concepts of compressed sensing Makes subject matter accessible for engineers of various levels Focuses on algorithms including group-sparsity and row-sparsity, as well as applications to computational imaging, medical imaging, biomedical signal processing, and machine learning Includes MATLAB examples for further development
Publisher: CRC Press
ISBN: 1351261347
Category : Technology & Engineering
Languages : en
Pages : 225
Book Description
Compressed Sensing (CS) in theory deals with the problem of recovering a sparse signal from an under-determined system of linear equations. The topic is of immense practical significance since all naturally occurring signals can be sparsely represented in some domain. In recent years, CS has helped reduce scan time in Magnetic Resonance Imaging (making scans more feasible for pediatric and geriatric subjects) and has also helped reduce the health hazard in X-Ray Computed CT. This book is a valuable resource suitable for an engineering student in signal processing and requires a basic understanding of signal processing and linear algebra. Covers fundamental concepts of compressed sensing Makes subject matter accessible for engineers of various levels Focuses on algorithms including group-sparsity and row-sparsity, as well as applications to computational imaging, medical imaging, biomedical signal processing, and machine learning Includes MATLAB examples for further development
Photoacoustic Tomography (PAT)
Author: Xueding Wang
Publisher: MDPI
ISBN: 3039436430
Category : Technology & Engineering
Languages : en
Pages : 152
Book Description
Photoacoustic (or optoacoustic) imaging, including photoacoustic tomography (PAT) and photoacoustic microscopy (PAM), is an emerging imaging modality with great clinical potential. PAI’s deep tissue penetration and fine spatial resolution also hold great promise for visualizing physiology and pathology at the molecular level. PAI combines optical contrast with ultrasonic resolution, and is capable of imaging at depths of up to 7 cm with a real-time scalable spatial resolution of 10 to 500 µm. PAI has demonstrated applications in brain imaging and cancer imaging, such as breast cancer, prostate cancer, ovarian cancer etc. This Special Issue focuses on the novel technological developments and pre-clinical and clinical biomedical applications of PAI. Topics include but are not limited to: brain imaging; cancer imaging; image reconstruction; quantitative imaging; light source and delivery for PAI; photoacoustic detectors; nanoparticles designed for PAI; photoacoustic molecular imaging; photoacoustic spectroscopy.
Publisher: MDPI
ISBN: 3039436430
Category : Technology & Engineering
Languages : en
Pages : 152
Book Description
Photoacoustic (or optoacoustic) imaging, including photoacoustic tomography (PAT) and photoacoustic microscopy (PAM), is an emerging imaging modality with great clinical potential. PAI’s deep tissue penetration and fine spatial resolution also hold great promise for visualizing physiology and pathology at the molecular level. PAI combines optical contrast with ultrasonic resolution, and is capable of imaging at depths of up to 7 cm with a real-time scalable spatial resolution of 10 to 500 µm. PAI has demonstrated applications in brain imaging and cancer imaging, such as breast cancer, prostate cancer, ovarian cancer etc. This Special Issue focuses on the novel technological developments and pre-clinical and clinical biomedical applications of PAI. Topics include but are not limited to: brain imaging; cancer imaging; image reconstruction; quantitative imaging; light source and delivery for PAI; photoacoustic detectors; nanoparticles designed for PAI; photoacoustic molecular imaging; photoacoustic spectroscopy.