Author: Edgar N. Sanchez
Publisher: CRC Press
ISBN: 1466580887
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.
Discrete-Time Inverse Optimal Control for Nonlinear Systems
Author: Edgar N. Sanchez
Publisher: CRC Press
ISBN: 1466580887
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.
Publisher: CRC Press
ISBN: 1466580887
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.
Neural Systems for Control
Author: Omid Omidvar
Publisher: Elsevier
ISBN: 0080537391
Category : Computers
Languages : en
Pages : 375
Book Description
Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis
Publisher: Elsevier
ISBN: 0080537391
Category : Computers
Languages : en
Pages : 375
Book Description
Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis
Neural Network Control of Nonlinear Discrete-Time Systems
Author: Jagannathan Sarangapani
Publisher: CRC Press
ISBN: 1420015451
Category : Technology & Engineering
Languages : en
Pages : 624
Book Description
Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.
Publisher: CRC Press
ISBN: 1420015451
Category : Technology & Engineering
Languages : en
Pages : 624
Book Description
Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.
Artificial Neural Networks for Modelling and Control of Non-Linear Systems
Author: Johan A.K. Suykens
Publisher: Springer Science & Business Media
ISBN: 1475724934
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required. The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos. The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLq emTheory, that have applications in control theory, system theory, circuit theory and Time Series Analysis.
Publisher: Springer Science & Business Media
ISBN: 1475724934
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required. The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos. The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLq emTheory, that have applications in control theory, system theory, circuit theory and Time Series Analysis.
Nonlinear and Optimal Control Systems
Author: Thomas L. Vincent
Publisher: John Wiley & Sons
ISBN: 9780471042358
Category : Science
Languages : en
Pages : 584
Book Description
Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.
Publisher: John Wiley & Sons
ISBN: 9780471042358
Category : Science
Languages : en
Pages : 584
Book Description
Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.
Language and Cognition
Author: Kuniyoshi L. Sakai
Publisher: Frontiers Media SA
ISBN: 2889196275
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 127
Book Description
Interaction between language and cognition remains an unsolved scientific problem. What are the differences in neural mechanisms of language and cognition? Why do children acquire language by the age of six, while taking a lifetime to acquire cognition? What is the role of language and cognition in thinking? Is abstract cognition possible without language? Is language just a communication device, or is it fundamental in developing thoughts? Why are there no animals with human thinking but without human language? Combinations even among 100 words and 100 objects (multiple words can represent multiple objects) exceed the number of all the particles in the Universe, and it seems that no amount of experience would suffice to learn these associations. How does human brain overcome this difficulty? Since the 19th century we know about involvement of Broca’s and Wernicke’s areas in language. What new knowledge of language and cognition areas has been found with fMRI and other brain imaging methods? Every year we know more about their anatomical and functional/effective connectivity. What can be inferred about mechanisms of their interaction, and about their functions in language and cognition? Why does the human brain show hemispheric (i.e., left or right) dominance for some specific linguistic and cognitive processes? Is understanding of language and cognition processed in the same brain area, or are there differences in language-semantic and cognitive-semantic brain areas? Is the syntactic process related to the structure of our conceptual world? Chomsky has suggested that language is separable from cognition. On the opposite, cognitive and construction linguistics emphasized a single mechanism of both. Neither has led to a computational theory so far. Evolutionary linguistics has emphasized evolution leading to a mechanism of language acquisition, yet proposed approaches also lead to incomputable complexity. There are some more related issues in linguistics and language education as well. Which brain regions govern phonology, lexicon, semantics, and syntax systems, as well as their acquisitions? What are the differences in acquisition of the first and second languages? Which mechanisms of cognition are involved in reading and writing? Are different writing systems affect relations between language and cognition? Are there differences in language-cognition interactions among different language groups (such as Indo-European, Chinese, Japanese, Semitic) and types (different degrees of analytic-isolating, synthetic-inflected, fused, agglutinative features)? What can be learned from sign languages? Rizzolatti and Arbib have proposed that language evolved on top of earlier mirror-neuron mechanism. Can this proposal answer the unknown questions about language and cognition? Can it explain mechanisms of language-cognition interaction? How does it relate to known brain areas and their interactions identified in brain imaging? Emotional and conceptual contents of voice sounds in animals are fused. Evolution of human language has demanded splitting of emotional and conceptual contents and mechanisms, although language prosody still carries emotional content. Is it a dying-off remnant, or is it fundamental for interaction between language and cognition? If language and cognitive mechanisms differ, unifying these two contents requires motivation, hence emotions. What are these emotions? Can they be measured? Tonal languages use pitch contours for semantic contents, are there differences in language-cognition interaction among tonal and atonal languages? Are emotional differences among cultures exclusively cultural, or also depend on languages? Interaction of language and cognition is thus full of mysteries, and we encourage papers addressing any aspect of this topic.
Publisher: Frontiers Media SA
ISBN: 2889196275
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 127
Book Description
Interaction between language and cognition remains an unsolved scientific problem. What are the differences in neural mechanisms of language and cognition? Why do children acquire language by the age of six, while taking a lifetime to acquire cognition? What is the role of language and cognition in thinking? Is abstract cognition possible without language? Is language just a communication device, or is it fundamental in developing thoughts? Why are there no animals with human thinking but without human language? Combinations even among 100 words and 100 objects (multiple words can represent multiple objects) exceed the number of all the particles in the Universe, and it seems that no amount of experience would suffice to learn these associations. How does human brain overcome this difficulty? Since the 19th century we know about involvement of Broca’s and Wernicke’s areas in language. What new knowledge of language and cognition areas has been found with fMRI and other brain imaging methods? Every year we know more about their anatomical and functional/effective connectivity. What can be inferred about mechanisms of their interaction, and about their functions in language and cognition? Why does the human brain show hemispheric (i.e., left or right) dominance for some specific linguistic and cognitive processes? Is understanding of language and cognition processed in the same brain area, or are there differences in language-semantic and cognitive-semantic brain areas? Is the syntactic process related to the structure of our conceptual world? Chomsky has suggested that language is separable from cognition. On the opposite, cognitive and construction linguistics emphasized a single mechanism of both. Neither has led to a computational theory so far. Evolutionary linguistics has emphasized evolution leading to a mechanism of language acquisition, yet proposed approaches also lead to incomputable complexity. There are some more related issues in linguistics and language education as well. Which brain regions govern phonology, lexicon, semantics, and syntax systems, as well as their acquisitions? What are the differences in acquisition of the first and second languages? Which mechanisms of cognition are involved in reading and writing? Are different writing systems affect relations between language and cognition? Are there differences in language-cognition interactions among different language groups (such as Indo-European, Chinese, Japanese, Semitic) and types (different degrees of analytic-isolating, synthetic-inflected, fused, agglutinative features)? What can be learned from sign languages? Rizzolatti and Arbib have proposed that language evolved on top of earlier mirror-neuron mechanism. Can this proposal answer the unknown questions about language and cognition? Can it explain mechanisms of language-cognition interaction? How does it relate to known brain areas and their interactions identified in brain imaging? Emotional and conceptual contents of voice sounds in animals are fused. Evolution of human language has demanded splitting of emotional and conceptual contents and mechanisms, although language prosody still carries emotional content. Is it a dying-off remnant, or is it fundamental for interaction between language and cognition? If language and cognitive mechanisms differ, unifying these two contents requires motivation, hence emotions. What are these emotions? Can they be measured? Tonal languages use pitch contours for semantic contents, are there differences in language-cognition interaction among tonal and atonal languages? Are emotional differences among cultures exclusively cultural, or also depend on languages? Interaction of language and cognition is thus full of mysteries, and we encourage papers addressing any aspect of this topic.
Self-Learning Optimal Control of Nonlinear Systems
Author: Qinglai Wei
Publisher: Springer
ISBN: 981104080X
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
This book presents a class of novel, self-learning, optimal control schemes based on adaptive dynamic programming techniques, which quantitatively obtain the optimal control schemes of the systems. It analyzes the properties identified by the programming methods, including the convergence of the iterative value functions and the stability of the system under iterative control laws, helping to guarantee the effectiveness of the methods developed. When the system model is known, self-learning optimal control is designed on the basis of the system model; when the system model is not known, adaptive dynamic programming is implemented according to the system data, effectively making the performance of the system converge to the optimum. With various real-world examples to complement and substantiate the mathematical analysis, the book is a valuable guide for engineers, researchers, and students in control science and engineering.
Publisher: Springer
ISBN: 981104080X
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
This book presents a class of novel, self-learning, optimal control schemes based on adaptive dynamic programming techniques, which quantitatively obtain the optimal control schemes of the systems. It analyzes the properties identified by the programming methods, including the convergence of the iterative value functions and the stability of the system under iterative control laws, helping to guarantee the effectiveness of the methods developed. When the system model is known, self-learning optimal control is designed on the basis of the system model; when the system model is not known, adaptive dynamic programming is implemented according to the system data, effectively making the performance of the system converge to the optimum. With various real-world examples to complement and substantiate the mathematical analysis, the book is a valuable guide for engineers, researchers, and students in control science and engineering.
Adaptive Dynamic Programming: Single and Multiple Controllers
Author: Ruizhuo Song
Publisher: Springer
ISBN: 9811317127
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.
Publisher: Springer
ISBN: 9811317127
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.
Differential Neural Networks for Robust Nonlinear Control
Author: Alexander S. Poznyak
Publisher: World Scientific
ISBN: 9810246242
Category : Computers
Languages : en
Pages : 455
Book Description
This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.).
Publisher: World Scientific
ISBN: 9810246242
Category : Computers
Languages : en
Pages : 455
Book Description
This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.).
Artificial Neural Networks and Machine Learning - ICANN 2011
Author: Timo Honkela
Publisher: Springer
ISBN: 3642217354
Category : Computers
Languages : en
Pages : 409
Book Description
This two volume set LNCS 6791 and LNCS 6792 constitutes the refereed proceedings of the 21th International Conference on Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in June 2011. The 106 revised full or poster papers presented were carefully reviewed and selected from numerous submissions. ICANN 2011 had two basic tracks: brain-inspired computing and machine learning research, with strong cross-disciplinary interactions and applications.
Publisher: Springer
ISBN: 3642217354
Category : Computers
Languages : en
Pages : 409
Book Description
This two volume set LNCS 6791 and LNCS 6792 constitutes the refereed proceedings of the 21th International Conference on Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in June 2011. The 106 revised full or poster papers presented were carefully reviewed and selected from numerous submissions. ICANN 2011 had two basic tracks: brain-inspired computing and machine learning research, with strong cross-disciplinary interactions and applications.