Relative Optimization of Continuous-Time and Continuous-State Stochastic Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Relative Optimization of Continuous-Time and Continuous-State Stochastic Systems PDF full book. Access full book title Relative Optimization of Continuous-Time and Continuous-State Stochastic Systems by Xi-Ren Cao. Download full books in PDF and EPUB format.

Relative Optimization of Continuous-Time and Continuous-State Stochastic Systems

Relative Optimization of Continuous-Time and Continuous-State Stochastic Systems PDF Author: Xi-Ren Cao
Publisher: Springer Nature
ISBN: 3030418464
Category : Technology & Engineering
Languages : en
Pages : 376

Book Description
This monograph applies the relative optimization approach to time nonhomogeneous continuous-time and continuous-state dynamic systems. The approach is intuitively clear and does not require deep knowledge of the mathematics of partial differential equations. The topics covered have the following distinguishing features: long-run average with no under-selectivity, non-smooth value functions with no viscosity solutions, diffusion processes with degenerate points, multi-class optimization with state classification, and optimization with no dynamic programming. The book begins with an introduction to relative optimization, including a comparison with the traditional approach of dynamic programming. The text then studies the Markov process, focusing on infinite-horizon optimization problems, and moves on to discuss optimal control of diffusion processes with semi-smooth value functions and degenerate points, and optimization of multi-dimensional diffusion processes. The book concludes with a brief overview of performance derivative-based optimization. Among the more important novel considerations presented are: the extension of the Hamilton–Jacobi–Bellman optimality condition from smooth to semi-smooth value functions by derivation of explicit optimality conditions at semi-smooth points and application of this result to degenerate and reflected processes; proof of semi-smoothness of the value function at degenerate points; attention to the under-selectivity issue for the long-run average and bias optimality; discussion of state classification for time nonhomogeneous continuous processes and multi-class optimization; and development of the multi-dimensional Tanaka formula for semi-smooth functions and application of this formula to stochastic control of multi-dimensional systems with degenerate points. The book will be of interest to researchers and students in the field of stochastic control and performance optimization alike.

Relative Optimization of Continuous-Time and Continuous-State Stochastic Systems

Relative Optimization of Continuous-Time and Continuous-State Stochastic Systems PDF Author: Xi-Ren Cao
Publisher: Springer Nature
ISBN: 3030418464
Category : Technology & Engineering
Languages : en
Pages : 376

Book Description
This monograph applies the relative optimization approach to time nonhomogeneous continuous-time and continuous-state dynamic systems. The approach is intuitively clear and does not require deep knowledge of the mathematics of partial differential equations. The topics covered have the following distinguishing features: long-run average with no under-selectivity, non-smooth value functions with no viscosity solutions, diffusion processes with degenerate points, multi-class optimization with state classification, and optimization with no dynamic programming. The book begins with an introduction to relative optimization, including a comparison with the traditional approach of dynamic programming. The text then studies the Markov process, focusing on infinite-horizon optimization problems, and moves on to discuss optimal control of diffusion processes with semi-smooth value functions and degenerate points, and optimization of multi-dimensional diffusion processes. The book concludes with a brief overview of performance derivative-based optimization. Among the more important novel considerations presented are: the extension of the Hamilton–Jacobi–Bellman optimality condition from smooth to semi-smooth value functions by derivation of explicit optimality conditions at semi-smooth points and application of this result to degenerate and reflected processes; proof of semi-smoothness of the value function at degenerate points; attention to the under-selectivity issue for the long-run average and bias optimality; discussion of state classification for time nonhomogeneous continuous processes and multi-class optimization; and development of the multi-dimensional Tanaka formula for semi-smooth functions and application of this formula to stochastic control of multi-dimensional systems with degenerate points. The book will be of interest to researchers and students in the field of stochastic control and performance optimization alike.

Controlled Diffusion Processes

Controlled Diffusion Processes PDF Author: N. V. Krylov
Publisher: Springer Science & Business Media
ISBN: 3540709142
Category : Science
Languages : en
Pages : 314

Book Description
Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. ~urin~ that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in Wonham [76]). At the same time, Girsanov [25] and Howard [26] made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4]. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8], Mine and Osaki [55], and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory.

Optimal Control and Partial Differential Equations

Optimal Control and Partial Differential Equations PDF Author: José Luis Menaldi
Publisher: IOS Press
ISBN: 9781586030964
Category : Mathematics
Languages : en
Pages : 632

Book Description
This volume contains more than sixty invited papers of international wellknown scientists in the fields where Alain Bensoussan's contributions have been particularly important: filtering and control of stochastic systems, variationnal problems, applications to economy and finance, numerical analysis... In particular, the extended texts of the lectures of Professors Jens Frehse, Hitashi Ishii, Jacques-Louis Lions, Sanjoy Mitter, Umberto Mosco, Bernt Oksendal, George Papanicolaou, A. Shiryaev, given in the Conference held in Paris on December 4th, 2000 in honor of Professor Alain Bensoussan are included.

Modern Optimal Control

Modern Optimal Control PDF Author: E. O. Roxin
Publisher: CRC Press
ISBN: 9780824781682
Category : Mathematics
Languages : en
Pages : 468

Book Description


Deterministic and Stochastic Optimal Control

Deterministic and Stochastic Optimal Control PDF Author: Wendell H. Fleming
Publisher: Springer Science & Business Media
ISBN: 1461263808
Category : Mathematics
Languages : en
Pages : 231

Book Description
This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.

Ergodic Control of Diffusion Processes

Ergodic Control of Diffusion Processes PDF Author: Ari Arapostathis
Publisher: Cambridge University Press
ISBN: 0521768403
Category : Mathematics
Languages : en
Pages : 341

Book Description
The first comprehensive account of controlled diffusions with a focus on ergodic or 'long run average' control.

Transactions of the Eighth Prague Conference

Transactions of the Eighth Prague Conference PDF Author: J. Kozesnik
Publisher: Springer Science & Business Media
ISBN: 9400998570
Category : Technology & Engineering
Languages : en
Pages : 368

Book Description


Optimal Control Models in Finance

Optimal Control Models in Finance PDF Author: Ping Chen
Publisher: Springer Science & Business Media
ISBN: 0387235701
Category : Mathematics
Languages : en
Pages : 208

Book Description
This book reports initial efforts in providing some useful extensions in - nancial modeling; further work is necessary to complete the research agenda. The demonstrated extensions in this book in the computation and modeling of optimal control in finance have shown the need and potential for further areas of study in financial modeling. Potentials are in both the mathematical structure and computational aspects of dynamic optimization. There are needs for more organized and coordinated computational approaches. These ext- sions will make dynamic financial optimization models relatively more stable for applications to academic and practical exercises in the areas of financial optimization, forecasting, planning and optimal social choice. This book will be useful to graduate students and academics in finance, mathematical economics, operations research and computer science. Prof- sional practitioners in the above areas will find the book interesting and inf- mative. The authors thank Professor B.D. Craven for providing extensive guidance and assistance in undertaking this research. This work owes significantly to him, which will be evident throughout the whole book. The differential eq- tion solver “nqq” used in this book was first developed by Professor Craven. Editorial assistance provided by Matthew Clarke, Margarita Kumnick and Tom Lun is also highly appreciated. Ping Chen also wants to thank her parents for their constant support and love during the past four years.

Optimal Control of Dynamic Systems Driven by Vector Measures

Optimal Control of Dynamic Systems Driven by Vector Measures PDF Author: N. U. Ahmed
Publisher: Springer Nature
ISBN: 3030821390
Category : Mathematics
Languages : en
Pages : 328

Book Description
This book is devoted to the development of optimal control theory for finite dimensional systems governed by deterministic and stochastic differential equations driven by vector measures. The book deals with a broad class of controls, including regular controls (vector-valued measurable functions), relaxed controls (measure-valued functions) and controls determined by vector measures, where both fully and partially observed control problems are considered. In the past few decades, there have been remarkable advances in the field of systems and control theory thanks to the unprecedented interaction between mathematics and the physical and engineering sciences. Recently, optimal control theory for dynamic systems driven by vector measures has attracted increasing interest. This book presents this theory for dynamic systems governed by both ordinary and stochastic differential equations, including extensive results on the existence of optimal controls and necessary conditions for optimality. Computational algorithms are developed based on the optimality conditions, with numerical results presented to demonstrate the applicability of the theoretical results developed in the book. This book will be of interest to researchers in optimal control or applied functional analysis interested in applications of vector measures to control theory, stochastic systems driven by vector measures, and related topics. In particular, this self-contained account can be a starting point for further advances in the theory and applications of dynamic systems driven and controlled by vector measures.

Stochastic Differential Equations and Processes

Stochastic Differential Equations and Processes PDF Author: Mounir Zili
Publisher: Springer Science & Business Media
ISBN: 3642223680
Category : Mathematics
Languages : en
Pages : 273

Book Description
Selected papers submitted by participants of the international Conference “Stochastic Analysis and Applied Probability 2010” ( www.saap2010.org ) make up the basis of this volume. The SAAP 2010 was held in Tunisia, from 7-9 October, 2010, and was organized by the “Applied Mathematics & Mathematical Physics” research unit of the preparatory institute to the military academies of Sousse (Tunisia), chaired by Mounir Zili. The papers cover theoretical, numerical and applied aspects of stochastic processes and stochastic differential equations. The study of such topic is motivated in part by the need to model, understand, forecast and control the behavior of many natural phenomena that evolve in time in a random way. Such phenomena appear in the fields of finance, telecommunications, economics, biology, geology, demography, physics, chemistry, signal processing and modern control theory, to mention just a few. As this book emphasizes the importance of numerical and theoretical studies of the stochastic differential equations and stochastic processes, it will be useful for a wide spectrum of researchers in applied probability, stochastic numerical and theoretical analysis and statistics, as well as for graduate students. To make it more complete and accessible for graduate students, practitioners and researchers, the editors Mounir Zili and Daria Filatova have included a survey dedicated to the basic concepts of numerical analysis of the stochastic differential equations, written by Henri Schurz.