Optical Properties of Narrow-Gap Low-Dimensional Structures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optical Properties of Narrow-Gap Low-Dimensional Structures PDF full book. Access full book title Optical Properties of Narrow-Gap Low-Dimensional Structures by Clivia M. Sotomayor Torres. Download full books in PDF and EPUB format.

Optical Properties of Narrow-Gap Low-Dimensional Structures

Optical Properties of Narrow-Gap Low-Dimensional Structures PDF Author: Clivia M. Sotomayor Torres
Publisher: Springer Science & Business Media
ISBN: 1461318793
Category : Science
Languages : en
Pages : 357

Book Description
This volume contains the Proceedings of the NATO Advanced Research Workshop on "Optical Properties of Narrow-Gap Low-Dimensional Structures", held from July 29th to August 1st, 1986, in St. Andrews, Scotland, under the auspices of the NATO International Scientific Exchange Program. The workshop was not limited to optical properties of narrow-gap semiconductor structures (Part III). Sessions on, for example, the growth methods and characterization of III-V, II-VI, and IV-VI materials, discussed in Part II, were an integral part of the workshop. Considering the small masses of the carriers in narrow-gap low dimensional structures (LOS), in Part I the enhanced band mixing and magnetic field effects are explored in the context of the envelope function approximation. Optical nonlinearities and energy relaxation phenomena applied to the well-known systems of HgCdTe and GaAs/GaAIAs, respectively, are reviewed with comments on their extension to narrow gap LOS. The relevance of optical observations in quantum transport studies is illustrated in Part IV. A review of devices based on epitaxial narrow-gap materials defines a frame of reference for future ones based on two-dimensional narrow-gap semiconductors; in addition, an analysis of the physics of quantum well lasers provides a guide to relevant parameters for narrow-gap laser devices for the infrared (Part V). The roles and potentials of special techniques are explored in Part VI, with emphasis on hydrostatic pressure techniques, since this has a pronounced effect in small-mass, narrow-gap, non-parabolic structures.

Optical Properties of Narrow-Gap Low-Dimensional Structures

Optical Properties of Narrow-Gap Low-Dimensional Structures PDF Author: Clivia M. Sotomayor Torres
Publisher: Springer Science & Business Media
ISBN: 1461318793
Category : Science
Languages : en
Pages : 357

Book Description
This volume contains the Proceedings of the NATO Advanced Research Workshop on "Optical Properties of Narrow-Gap Low-Dimensional Structures", held from July 29th to August 1st, 1986, in St. Andrews, Scotland, under the auspices of the NATO International Scientific Exchange Program. The workshop was not limited to optical properties of narrow-gap semiconductor structures (Part III). Sessions on, for example, the growth methods and characterization of III-V, II-VI, and IV-VI materials, discussed in Part II, were an integral part of the workshop. Considering the small masses of the carriers in narrow-gap low dimensional structures (LOS), in Part I the enhanced band mixing and magnetic field effects are explored in the context of the envelope function approximation. Optical nonlinearities and energy relaxation phenomena applied to the well-known systems of HgCdTe and GaAs/GaAIAs, respectively, are reviewed with comments on their extension to narrow gap LOS. The relevance of optical observations in quantum transport studies is illustrated in Part IV. A review of devices based on epitaxial narrow-gap materials defines a frame of reference for future ones based on two-dimensional narrow-gap semiconductors; in addition, an analysis of the physics of quantum well lasers provides a guide to relevant parameters for narrow-gap laser devices for the infrared (Part V). The roles and potentials of special techniques are explored in Part VI, with emphasis on hydrostatic pressure techniques, since this has a pronounced effect in small-mass, narrow-gap, non-parabolic structures.

Optical Properties of Narrow-Gap Low-Dimensional Structures

Optical Properties of Narrow-Gap Low-Dimensional Structures PDF Author: Clivia M Sotomayor Torres
Publisher:
ISBN: 9781461318804
Category :
Languages : en
Pages : 376

Book Description


Physics and Properties of Narrow Gap Semiconductors

Physics and Properties of Narrow Gap Semiconductors PDF Author: Junhao Chu
Publisher: Springer Science & Business Media
ISBN: 0387748016
Category : Science
Languages : en
Pages : 613

Book Description
Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. They often operate at the extremes of the rules of semiconductor science. This book offers clear descriptions of crystal growth and the fundamental structure and properties of these unique materials. Topics covered include band structure, optical and transport properties, and lattice vibrations and spectra. A thorough treatment of the properties of low-dimensional systems and their relation to infrared applications is provided.

Optical Properties Of Low-dimensional Materials, Vol 2

Optical Properties Of Low-dimensional Materials, Vol 2 PDF Author: Tetsuo Ogawa
Publisher: World Scientific
ISBN: 9814497754
Category : Science
Languages : en
Pages : 470

Book Description
This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promising researchers in each field. All the materials introduced in this book yield new optical phenomena originating from their mesoscopic and low-dimensional electronic characters and electron-lattice couplings, which offer a new research field of materials science as well as condensed-matter and optical physics. Volumes 1 and 2 are interrelated but can be read independently. They are pitched at the level of graduate students and are useful to both students and scientists.

Optical Properties of Low-dimensional Materials

Optical Properties of Low-dimensional Materials PDF Author: Tetsuo Ogawa
Publisher: World Scientific
ISBN: 9789810230487
Category : Science
Languages : en
Pages : 478

Book Description
This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promising researchers in each field. All the materials introduced in this book yield new optical phenomena originating from their mesoscopic and low-dimensional electronic characters and electron-lattice couplings, which offer a new research field of materials science as well as condensed-matter and optical physics. Volumes 1 and 2 are interrelated but can be read independently. They are pitched at the level of graduate students and are useful to both students and scientists.

Magneto-optical Properties of Narrow-gap Semiconductor Heterostructures

Magneto-optical Properties of Narrow-gap Semiconductor Heterostructures PDF Author: Xingyuan Pan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
ABSTRACT: Next generation of semiconductor device will not only based on the charge transport properties of the carrier, but also their spin degree of freedom. In order to understand or predict how those devices work one need to understand the spin-dependent electronic structures of both bulk and low-dimensional semiconductors. We have theoretically studied the spin-dependent Landau levels for electrons or holes in bulk GaAs system and AlInSb/InSb multiple quantum wells system. We use the envelope function approximation for the electronic and magneto-optical properties of AlInSb/InSb superlattices. Our model includes the conduction electrons, heavy holes, light holes and the split-off holes for a total of 8 bands when spin is taken into account. It is a generalization of the Pidgeon-Brown model to include the wave vector dependence of the electronic states, as well as quantization of wave vector due to multiple quantum well superlattice effects. In addition, we take strain effects into account by assuming pseudomorphic growth conditions. For bulk GaAs system, we calculated the spin-dependent absorption coefficients which can be directly compared with the optically pumped NMR experiment. We show that the optically pumped NMR is a complimentary tool to traditional magneto optical absorption measurement, in the sense that optically pumped NMR is more sensitive to the light hole transitions which are very hard to resolve in the traditional magneto absorption measurement. For the AlInSb/InSb multiple quantum well system, we calculated both the magneto absorption spectra and 10 the cyclotron resonance spectra. We compare both spectra to experimental results and achieve a good agreement. This agreement assures us that our understanding of the valence band structure of the narrow gap InSb materials are correct.

Light Scattering in Semiconductor Structures and Superlattices

Light Scattering in Semiconductor Structures and Superlattices PDF Author: D.J. Lockwood
Publisher: Springer
ISBN: 1489936955
Category : Science
Languages : en
Pages : 592

Book Description
Just over 25 years ago the first laser-excited Raman spectrum of any crystal was obtained. In November 1964, Hobden and Russell reported the Raman spectrum of GaP and later, in June 1965, Russell published the Si spectrum. Then, in July 1965, the forerunner of a series of meetings on light scattering in solids was held in Paris. Laser Raman spectroscopy of semiconductors was at the forefront in new developments at this meeting. Similar meetings were held in 1968 (New York), 1971 (Paris) and 1975 (Campinas). Since then, and apart from the multidisciplinary biennial International Conference on Raman Spectroscopy there has been no special forum for experts in light scattering spectroscopy of semiconductors to meet and discuss latest developments. Meanwhile, technological advances in semiconductor growth have given rise to a veritable renaissance in the field of semiconductor physics. Light scattering spectroscopy has played a crucial role in the advancement of this field, providing valuable information about the electronic, vibrational and structural properties both of the host materials, and of heterogeneous composite structures. On entering a new decade, one in which technological advances in lithography promise to open even broader horirons for semiconductor physics, it seemed to us to be an ideal time to reflect on the achievements of the past decade, to be brought up to date on the current state-of-the-art, and to catch some glimpses of where the field might be headed in the 1990s.

Band Structure Engineering in Semiconductor Microstructures

Band Structure Engineering in Semiconductor Microstructures PDF Author: R.A. Abram
Publisher: Springer Science & Business Media
ISBN: 1475707703
Category : Science
Languages : en
Pages : 383

Book Description
This volume contains the proceedings of the NATO Advanced Research Workshop on Band Structure Engineering in Semiconductor Microstructures held at Il Ciocco, Castelvecchio Pascali in Tuscany between 10th and 15th April 1988. Research on semiconductor microstructures has expanded rapidly in recent years as a result of developments in the semiconductor growth and device fabrication technologies. The emergence of new semiconductor structures has facilitated a number of approaches to producing systems with certain features in their electronic structure which can lead to useful or interesting properties. The interest in band structure engineering has stimd ated a variety of physical investigations and nove 1 device concepts and the field now exhibits a fascinating interplay betwepn pure physics and device technology. Devices based on microstruc tures are useful vehicles for fundamental studies but also new device ideas require a thorough understanding of the basic physics. Around forty researchers gathered at I1 Ciocco in the Spring of 1988 to discuss band structure engineering in semiconductor microstructures.

Science and Engineering of One- and Zero-Dimensional Semiconductors

Science and Engineering of One- and Zero-Dimensional Semiconductors PDF Author: Steven P. Beaumont
Publisher: Springer Science & Business Media
ISBN: 1468457330
Category : Science
Languages : en
Pages : 338

Book Description
This volume comprises the proceedings of the NATO Advanced Research Workshop on the Science and Engineering of 1- and O-dimensional semiconductors held at the University of Cadiz from 29th March to 1st April 1989, under the auspices of the NATO International Scientific Exchange Program. There is a wealth of scientific activity on the properties of two-dimensional semiconductors arising largely from the ease with which such structures can now be grown by precision epitaxy techniques or created by inversion at the silicon-silicon dioxide interface. Only recently, however, has there burgeoned an interest in the properties of structures in which carriers are further confined with only one or, in the extreme, zero degrees of freedom. This workshop was one of the first meetings to concentrate almost exclusively on this subject: that the attendance of some forty researchers only represented the community of researchers in the field testifies to its rapid expansion, which has arisen from the increasing availability of technologies for fabricating structures with small enough (sub - O. I/tm) dimensions. Part I of this volume is a short section on important topics in nanofabrication. It should not be assumed from the brevity of this section that there is little new to be said on this issue: rather that to have done justice to it would have diverted attention from the main purpose of the meeting which was to highlight experimental and theoretical research on the structures themselves.

Quantum Semiconductor Structures

Quantum Semiconductor Structures PDF Author: Claude Weisbuch
Publisher: Elsevier
ISBN: 0080515576
Category : Science
Languages : en
Pages : 252

Book Description
In its original form, this widely acclaimed primer on the fundamentals of quantized semiconductor structures was published as an introductory chapter in Raymond Dingle's edited volume (24) of Semiconductors and Semimetals. Having already been praised by reviewers for its excellent coverage, this material is now available in an updated and expanded "student edition." This work promises to become a standard reference in the field. It covers the basics of electronic states as well as the fundamentals of optical interactions and quantum transport in two-dimensional quantized systems. This revised student edition also includes entirely new sections discussing applications and one-dimensional and zero-dimensional systems. Available for the first time in a new, expanded version Provides a concise introduction to the fundamentals and fascinating applications of quantized semiconductor structures