Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols PDF full book. Access full book title Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols by . Download full books in PDF and EPUB format.

Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

Optical Properties and Chemical Composition of Secondary Organic Aerosol

Optical Properties and Chemical Composition of Secondary Organic Aerosol PDF Author: Fathima Rifkha Kameel
Publisher:
ISBN:
Category : Atmospheric aerosols
Languages : en
Pages : 86

Book Description
Aerosol particles (APs) affect the Earth's energy balance directly by absorbing and scattering radiation, and indirectly by altering the reflectance and persistence of clouds. Both parameters are determined by the chemical composition, size and shape of APs. APs consist of complex organic and inorganic mixtures, which include black carbon/soot as well secondary organic matter (SOM) proceeding from the gas-phase. SOM, also known as humic-like substances (HULIS), plays a key role in determining the optical properties of APs due to its ability to absorb radiation in the visible region of the solar spectrum. The chemical characterization of SOM is a daunting task that involves comprehensive chemical analysis, largely via chromatography/high-resolution mass spectrometry (HRMS), one of the most powerful analytical techniques available. However, optical properties are associated with chromophores within specific chemical structures, rather than with molecular formulas. Simpler mixtures can mimic the optical properties of secondary organic aerosol (SOA). Optical properties of mixtures are not linear combinations of the optical properties of its components. Furthermore, optical properties are not intrinsic to APs, but depend on external parameters, such as insolation and relative humidity. Therefore full speciation is neither a necessary nor sufficient condition for characterizing the optical properties of SOA.

Morphology Dependent Optical Properties of Mixed Organic/Inorganic Aerosol Particles

Morphology Dependent Optical Properties of Mixed Organic/Inorganic Aerosol Particles PDF Author: Kristin Di Monte
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Light extinction by atmospheric aerosol particles and their interactions with water are heavily dependent on their chemical composition, morphology, and mixing state. Both properties are crucial for determining the impact aerosol particles have on our climate. Since light extinction directly impacts visibility as well as climate, measurements of the extinction at varying relative humidities (RH) are needed in order to improve climate models. In this work we have measured the relative humidity dependence of aerosol light extinction and water uptake at 643 nm for particles of varying ammonium sulfate/organic compositions. Internal as well as external mixtures of levoglucosan, sucrose, and adipic acid with ammonium sulfate are investigated using cavity ring-down spectroscopy (CRDS). Optical growth factor (fRH) and hygroscopicity parameters ([kappa]) are reported for each aerosol system.

LABORATORY AND FIELD INVESTIGATION OF MIXING, MORPHOLOGY AND OPTICAL PROPERTIES OF SOOT AND SECONDARY ORGANIC AEROSOLS

LABORATORY AND FIELD INVESTIGATION OF MIXING, MORPHOLOGY AND OPTICAL PROPERTIES OF SOOT AND SECONDARY ORGANIC AEROSOLS PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Quantification of Black Carbon Mixing State from Traffic

Quantification of Black Carbon Mixing State from Traffic PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Book Description


Chemical and Optical Properties of Organic Aerosols in the Atmosphere Over Continental US

Chemical and Optical Properties of Organic Aerosols in the Atmosphere Over Continental US PDF Author: Jiumeng Liu
Publisher:
ISBN:
Category : Aerosols Optical properties
Languages : en
Pages :

Book Description
The chemical and optical properties of particulate organic compounds remain unclear, which leaves large uncertainties in the estimation of global radiative transfer balance. Gas and find particle (PM2.5) phase formic acid concentrations were measured with online instrumentation during separate one-month studies in the summer of 2010 in Los Angeles (LA), CA, and Atlanta, GA, and the gas-particle partitioning behavior was investigated and compared with that of water-soluble organic compounds (WSOC). The diurnal profiles clearly indicated that the photochemistry production serves as a strong source for the formation of organics, while the correlation between the gas and particle phase suggested that another partitioning route, the aqueous reactions, is also very important. Later, the optical properties of light-absorbing organic compounds were examined. Little is known about the optical importance of light absorbing particulate organic compounds (brown carbon), especially its extent and absorption relative to black carbon throughout the tropospheric column. Mie theory was applied to size-resolved spectrophotometric absorption measurements of methanol and water-extracts from cascade impactor substrates collected at three surface sites around Atlanta, GA, including both urban and rural. These results were applied to similar measurements of brown carbon in extracts from aircraft bulk filter samples collected over central USA. At the surface sites predicted light absorption by brown carbon relative to total absorption (brown carbon plus pure black carbon) was about 10% and 30% at 350 nm, versus 1 and 11% at 450 nm, for water and methanol extracts, respectively. The relative contribution of brown carbon was greater in the free troposphere and significantly increased with altitude. Although this approach has limitations, it demonstrates the ubiquity and significant potential contribution of brown carbon.

Determining the Optical Properties of Secondary Organic Aerosols Using UV-Vis Spectroscopy

Determining the Optical Properties of Secondary Organic Aerosols Using UV-Vis Spectroscopy PDF Author: Vanessa Selimovic
Publisher:
ISBN:
Category : Atmospheric aerosols
Languages : en
Pages : 96

Book Description
"In this study, Fulvic Acid was used as a model to validate the experimental procedure for the analysis of several different samples of varying concentrations and compositions of SOA [secondary organic aerosols] generated by the oxidation of volatile organic compounds (VOC), specifically 1,2,4-trimethylbenzene." --

Optical Properties of Moderately-Absorbing Organic and Mixed Organic/Inorganic Particles at Very High Humidities

Optical Properties of Moderately-Absorbing Organic and Mixed Organic/Inorganic Particles at Very High Humidities PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Relative humidity (RH) affects the water content of an aerosol, altering its ability to scatter and absorb light, which is important for aerosol effects on climate and visibility. This project involves in situ measurement and modeling of aerosol optical properties including absorption, scattering and extinction at three visible wavelengths (467, 530, 660 nm), for organic carbon (OC) generated by pyrolysis of biomass, ammonium sulfate and sodium chloride, and their mixtures at controlled RH conditions. Novel components of this project include investigation of: (1) Changes in all three of these optical properties at scanned RH conditions; (2) Optical properties at RH values up to 95%, which are usually extrapolated instead of measured; and (3) Examination of aerosols generated by the pyrolysis of wood, which is representative of primary atmospheric organic carbon, and its mixture with inorganic aerosol. Scattering and extinction values were used to determine light absorption by difference and single scattering albedo values. Extensive instrumentation development and benchmarking with independently measured and modeled values were used to obtain and evaluate these new results. The single scattering albedo value for a dry absorbing polystyrene microsphere benchmark agreed within 0.02 (absolute value) with independently published results at 530 nm. Light absorption by a nigrosin (sample light-absorbing) benchmark increased by a factor of 1.24 +/-0.06 at all wavelengths as RH increased from 38 to 95%. Closure modeling with Mie theory was able to reproduce this increase with the linear volume average (LVA) refractive index mixing rule for this water soluble compound. Absorption by biomass OC aerosol increased by a factor of 2.1 +/- 0.7 and 2.3 +/- 1.2 between 32 and 95% RH at 467 nm and 530 nm, but there was no detectable absorption at 660 nm. Additionally, the spectral dependence of absorption by OC that was observed with filter measurements was confirmed qualitatively in situ at 467 and 530 nm. Closure modeling with the dynamic effective medium approximation (DEMA) refractive index model was able to capture the increasing absorption trend with RH indicating that the droplets were heterogeneously mixed while containing dispersed insoluble absorbing material within those droplets. Seven other refractive index mixing models including LVA did not adequately describe the measurements for OC. Mixing the biomass OC aerosol with select mass fractions of ammonium sulfate ranging from 25 to 36% and sodium chloride ranging from 21 to 30% resulted in an increase in light scattering and extinction with RH and inorganic mass fraction. However, no detectable difference in light absorption behavior in comparison to pure biomass OC was observed. The main finding of this research is a measured increase in absorption with increasing RH, which is currently not represented in radiative transfer models even though biomass burning produces most of the primary OC aerosol in the atmosphere.

Light Scattering by Nonspherical Particles

Light Scattering by Nonspherical Particles PDF Author: Michael I. Mishchenko
Publisher: Elsevier
ISBN: 0080510205
Category : Science
Languages : en
Pages : 721

Book Description
There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid particles encountered in natural and laboratory conditions have nonspherical shapes. Examples are soot and mineral aerosols, cirrus cloud particles, snow and frost crystals, ocean hydrosols, interplanetary and cometary dust grains, and microorganisms. It is now well known that scattering properties of nonspherical particles can differ dramatically from those of "equivalent" (e.g., equal-volume or equal-surface-area) spheres. Therefore, the ability to accurately compute or measure light scattering by nonspherical particles in order to clearly understand the effects of particle nonsphericity on light scattering is very important. The rapid improvement of computers and experimental techniques over the past 20 years and the development of efficient numerical approaches have resulted in major advances in this field which have not been systematically summarized. Because of the universal importance of electromagnetic scattering by nonspherical particles, papers on different aspects of this subject are scattered over dozens of diverse research and engineering journals. Often experts in one discipline (e.g., biology) are unaware of potentially useful results obtained in another discipline (e.g., antennas and propagation). This leads to an inefficient use of the accumulated knowledge and unnecessary redundancy in research activities. This book offers the first systematic and unified discussion of light scattering by nonspherical particles and its practical applications and represents the state-of-the-art of this important research field. Individual chapters are written by leading experts in respective areas and cover three major disciplines: theoretical and numerical techniques, laboratory measurements, and practical applications. An overview chapter provides a concise general introduction to the subject of nonspherical scattering and should be especially useful to beginners and those interested in fast practical applications. The audience for this book will include graduate students, scientists, and engineers working on specific aspects of electromagnetic scattering by small particles and its applications in remote sensing, geophysics, astrophysics, biomedical optics, and optical engineering. The first systematic and comprehensive treatment of electromagnetic scattering by nonspherical particles and its applications Individual chapters are written by leading experts in respective areas Includes a survey of all the relevant literature scattered over dozens of basic and applied research journals Consistent use of unified definitions and notation makes the book a coherent volume An overview chapter provides a concise general introduction to the subject of light scattering by nonspherical particles Theoretical chapters describe specific easy-to-use computer codes publicly available on the World Wide Web Extensively illustrated with over 200 figures, 4 in color

Carbonaceous Aerosol

Carbonaceous Aerosol PDF Author: András Gelencsér
Publisher: Springer Science & Business Media
ISBN: 1402028873
Category : Science
Languages : en
Pages : 357

Book Description
The concept of carbonaceous aerosol has only recently emerged from atmospheric pollution studies; even standard nomenclature and terminology are still unsettled. This monograph is the first to offer comprehensive coverage of the nature and atmospheric role of carbonaceous aerosol particles. Atmospheric chemists, physicists, meteorologists, and modellers will find this a thought-inspiring and sometimes provocative overview of all global phenomena affected by or related to carbonaceous aerosol.