Metrics, Norms, Inner Products, and Operator Theory

Metrics, Norms, Inner Products, and Operator Theory PDF Author: Christopher Heil
Publisher: Birkhäuser
ISBN: 3319653229
Category : Mathematics
Languages : en
Pages : 374

Book Description
This text is a self-contained introduction to the three main families that we encounter in analysis – metric spaces, normed spaces, and inner product spaces – and to the operators that transform objects in one into objects in another. With an emphasis on the fundamental properties defining the spaces, this book guides readers to a deeper understanding of analysis and an appreciation of the field as the “science of functions.” Many important topics that are rarely presented in an accessible way to undergraduate students are included, such as unconditional convergence of series, Schauder bases for Banach spaces, the dual of lp topological isomorphisms, the Spectral Theorem, the Baire Category Theorem, and the Uniform Boundedness Principle. The text is constructed in such a way that instructors have the option whether to include more advanced topics. Written in an appealing and accessible style, Metrics, Norms, Inner Products, and Operator Theory is suitable for independent study or as the basis for an undergraduate-level course. Instructors have several options for building a course around the text depending on the level and interests of their students. Key features: Aimed at students who have a basic knowledge of undergraduate real analysis. All of the required background material is reviewed in the first chapter. Suitable for undergraduate-level courses; no familiarity with measure theory is required. Extensive exercises complement the text and provide opportunities for learning by doing. A separate solutions manual is available for instructors via the Birkhäuser website (www.springer.com/978-3-319-65321-1). Unique text providing an undergraduate-level introduction to metrics, norms, inner products, and their associated operator theory.

Elements of Hilbert Spaces and Operator Theory

Elements of Hilbert Spaces and Operator Theory PDF Author: Harkrishan Lal Vasudeva
Publisher: Springer
ISBN: 9811030200
Category : Mathematics
Languages : en
Pages : 528

Book Description
The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.

Characterizations of Inner Product Spaces

Characterizations of Inner Product Spaces PDF Author: Amir
Publisher: Birkhäuser
ISBN: 3034854870
Category : Science
Languages : en
Pages : 205

Book Description
Every mathematician working in Banaeh spaee geometry or Approximation theory knows, from his own experienee, that most "natural" geometrie properties may faH to hold in a generalnormed spaee unless the spaee is an inner produet spaee. To reeall the weIl known definitions, this means IIx 11 = *, where is an inner (or: scalar) product on E, Le. a function from ExE to the underlying (real or eomplex) field satisfying: (i) O for x o. (ii) is linear in x. (iii) = (intherealease, thisisjust =

Linear Algebra Done Right

Linear Algebra Done Right PDF Author: Sheldon Axler
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276

Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.

Operator Theory in Inner Product Spaces

Operator Theory in Inner Product Spaces PDF Author: Karl-Heinz Förster
Publisher: Springer Science & Business Media
ISBN: 3764382694
Category : Mathematics
Languages : en
Pages : 242

Book Description
This volume contains contributions written by participants of the 4th Workshop on Operator Theory in Krein Spaces and Applications, held at the TU Berlin, Germany, December 17 to 19, 2004. The workshop covered topics from spectral, perturbation, and extension theory of linear operators and relations in inner product spaces.

Operator Theory and Indefinite Inner Product Spaces

Operator Theory and Indefinite Inner Product Spaces PDF Author: Matthias Langer
Publisher: Springer Science & Business Media
ISBN: 3764375167
Category : Mathematics
Languages : en
Pages : 403

Book Description
A colloquium on operator theory was held in Vienna, Austria, in March 2004, on the occasion of the retirement of Heinz Langer, a leading expert in operator theory and indefinite inner product spaces. The book contains fifteen refereed articles reporting on recent and original results in various areas of operator theory, all of them related with the work of Heinz Langer. The topics range from abstract spectral theory in Krein spaces to more concrete applications, such as boundary value problems, the study of orthogonal functions, or moment problems. The book closes with a historical survey paper.

Elements of Operator Theory

Elements of Operator Theory PDF Author: Carlos S. Kubrusly
Publisher: Springer Science & Business Media
ISBN: 1475733283
Category : Mathematics
Languages : en
Pages : 535

Book Description
{\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter.

Linear Operators in Spaces with an Indefinite Metric

Linear Operators in Spaces with an Indefinite Metric PDF Author: Tomas I︠A︡kovlevich Azizov
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 328

Book Description
An introduction to the geometry of spaces, this research monograph develops the foundations of the theory of linear operators in these spaces and examines the theory of invariant subspaces, spectral questions and the question of the extension of operators.

Operators on Hilbert Space

Operators on Hilbert Space PDF Author: V. S. Sunder
Publisher: Springer
ISBN: 9811018162
Category : Mathematics
Languages : en
Pages : 107

Book Description
The primarily objective of the book is to serve as a primer on the theory of bounded linear operators on separable Hilbert space. The book presents the spectral theorem as a statement on the existence of a unique continuous and measurable functional calculus. It discusses a proof without digressing into a course on the Gelfand theory of commutative Banach algebras. The book also introduces the reader to the basic facts concerning the various von Neumann–Schatten ideals, the compact operators, the trace-class operators and all bounded operators.

An Indefinite Excursion in Operator Theory

An Indefinite Excursion in Operator Theory PDF Author: Aurelian Gheondea
Publisher: Cambridge University Press
ISBN: 1108969038
Category : Mathematics
Languages : en
Pages : 511

Book Description
Presents a modern, readable introduction to spaces with indefinite inner product and their operator theory.