Open Problems in Arithmetic Algebraic Geometry PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Open Problems in Arithmetic Algebraic Geometry PDF full book. Access full book title Open Problems in Arithmetic Algebraic Geometry by Frans Oort. Download full books in PDF and EPUB format.

Open Problems in Arithmetic Algebraic Geometry

Open Problems in Arithmetic Algebraic Geometry PDF Author: Frans Oort
Publisher:
ISBN: 9781571463739
Category : Arithmetical algebraic geometry
Languages : en
Pages : 331

Book Description


Open Problems in Arithmetic Algebraic Geometry

Open Problems in Arithmetic Algebraic Geometry PDF Author: Frans Oort
Publisher:
ISBN: 9781571463739
Category : Arithmetical algebraic geometry
Languages : en
Pages : 331

Book Description


Arithmetic Algebraic Geometry

Arithmetic Algebraic Geometry PDF Author: Brian David Conrad
Publisher: American Mathematical Soc.
ISBN: 9780821886915
Category : Mathematics
Languages : en
Pages : 588

Book Description
The articles in this volume are expanded versions of lectures delivered at the Graduate Summer School and at the Mentoring Program for Women in Mathematics held at the Institute for Advanced Study/Park City Mathematics Institute. The theme of the program was arithmetic algebraic geometry. The choice of lecture topics was heavily influenced by the recent spectacular work of Wiles on modular elliptic curves and Fermat's Last Theorem. The main emphasis of the articles in the volume is on elliptic curves, Galois representations, and modular forms. One lecture series offers an introduction to these objects. The others discuss selected recent results, current research, and open problems and conjectures. The book would be a suitable text for an advanced graduate topics course in arithmetic algebraic geometry.

An Invitation to Arithmetic Geometry

An Invitation to Arithmetic Geometry PDF Author: Dino Lorenzini
Publisher: American Mathematical Society
ISBN: 1470467259
Category : Mathematics
Languages : en
Pages : 397

Book Description
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.

Polynomial Automorphisms

Polynomial Automorphisms PDF Author: Arnoldus Richardus Petrus van den Essen
Publisher: Springer Science & Business Media
ISBN: 9783764363505
Category : Automorphisms
Languages : en
Pages : 360

Book Description


Moduli Spaces and Arithmetic Dynamics

Moduli Spaces and Arithmetic Dynamics PDF Author: Joseph H. Silverman
Publisher: American Mathematical Soc.
ISBN: 0821885030
Category : Mathematics
Languages : en
Pages : 151

Book Description


Galois Representations in Arithmetic Algebraic Geometry

Galois Representations in Arithmetic Algebraic Geometry PDF Author: A. J. Scholl
Publisher: Cambridge University Press
ISBN: 0521644194
Category : Mathematics
Languages : en
Pages : 506

Book Description
Conference proceedings based on the 1996 LMS Durham Symposium 'Galois representations in arithmetic algebraic geometry'.

Rationality Problems in Algebraic Geometry

Rationality Problems in Algebraic Geometry PDF Author: Arnaud Beauville
Publisher: Springer
ISBN: 3319462091
Category : Mathematics
Languages : en
Pages : 176

Book Description
Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.

Modular Forms and Fermat’s Last Theorem

Modular Forms and Fermat’s Last Theorem PDF Author: Gary Cornell
Publisher: Springer Science & Business Media
ISBN: 1461219744
Category : Mathematics
Languages : en
Pages : 592

Book Description
This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.

Open Middle Math

Open Middle Math PDF Author: Robert Kaplinsky
Publisher: Taylor & Francis
ISBN: 1003839886
Category : Education
Languages : en
Pages : 193

Book Description
This book is an amazing resource for teachers who are struggling to help students develop both procedural fluency and conceptual understanding.. --Dr. Margaret (Peg) Smith, co-author of5 Practices for Orchestrating Productive Mathematical Discussions Robert Kaplinsky, the co-creator of Open Middle math problems, brings hisnew class of tasks designed to stimulate deeper thinking and lively discussion among middle and high school students in Open Middle Math: Problems That Unlock Student Thinking, Grades 6-12. The problems are characterized by a closed beginning,- meaning all students start with the same initial problem, and a closed end,- meaning there is only one correct or optimal answer. The key is that the middle is open- in the sense that there are multiple ways to approach and ultimately solve the problem. These tasks have proven enormously popular with teachers looking to assess and deepen student understanding, build student stamina, and energize their classrooms. Professional Learning Resource for Teachers: Open Middle Math is an indispensable resource for educators interested in teaching student-centered mathematics in middle and high schools consistent with the national and state standards. Sample Problems at Each Grade: The book demonstrates the Open Middle concept with sample problems ranging from dividing fractions at 6th grade to algebra, trigonometry, and calculus. Teaching Tips for Student-Centered Math Classrooms: Kaplinsky shares guidance on choosing problems, designing your own math problems, and teaching for multiple purposes, including formative assessment, identifying misconceptions, procedural fluency, and conceptual understanding. Adaptable and Accessible Math: The tasks can be solved using various strategies at different levels of sophistication, which means all students can access the problems and participate in the conversation. Open Middle Math will help math teachers transform the 6th -12th grade classroom into an environment focused on problem solving, student dialogue, and critical thinking.

Algebraic Geometry and Commutative Algebra

Algebraic Geometry and Commutative Algebra PDF Author: Siegfried Bosch
Publisher: Springer Nature
ISBN: 1447175239
Category : Mathematics
Languages : en
Pages : 504

Book Description
Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.