Author: Draguna L. Vrabie
Publisher: IET
ISBN: 1849194890
Category : Computers
Languages : en
Pages : 305
Book Description
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.
Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles
Author: Draguna L. Vrabie
Publisher: IET
ISBN: 1849194890
Category : Computers
Languages : en
Pages : 305
Book Description
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.
Publisher: IET
ISBN: 1849194890
Category : Computers
Languages : en
Pages : 305
Book Description
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.
Reinforcement Learning and Approximate Dynamic Programming for Feedback Control
Author: Frank L. Lewis
Publisher: John Wiley & Sons
ISBN: 1118453972
Category : Technology & Engineering
Languages : en
Pages : 498
Book Description
Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.
Publisher: John Wiley & Sons
ISBN: 1118453972
Category : Technology & Engineering
Languages : en
Pages : 498
Book Description
Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.
Adaptive Dynamic Programming with Applications in Optimal Control
Author: Derong Liu
Publisher: Springer
ISBN: 3319508156
Category : Technology & Engineering
Languages : en
Pages : 609
Book Description
This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP approach which is then extended to other branches of control theory including decentralized control, robust and guaranteed cost control, and game theory. In the last part of the book the real-world significance of ADP theory is presented, focusing on three application examples developed from the authors’ work: • renewable energy scheduling for smart power grids;• coal gasification processes; and• water–gas shift reactions. Researchers studying intelligent control methods and practitioners looking to apply them in the chemical-process and power-supply industries will find much to interest them in this thorough treatment of an advanced approach to control.
Publisher: Springer
ISBN: 3319508156
Category : Technology & Engineering
Languages : en
Pages : 609
Book Description
This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP approach which is then extended to other branches of control theory including decentralized control, robust and guaranteed cost control, and game theory. In the last part of the book the real-world significance of ADP theory is presented, focusing on three application examples developed from the authors’ work: • renewable energy scheduling for smart power grids;• coal gasification processes; and• water–gas shift reactions. Researchers studying intelligent control methods and practitioners looking to apply them in the chemical-process and power-supply industries will find much to interest them in this thorough treatment of an advanced approach to control.
Mechanical Engineers' Handbook, Volume 2
Author: Myer Kutz
Publisher: John Wiley & Sons
ISBN: 1118112830
Category : Technology & Engineering
Languages : en
Pages : 1008
Book Description
Full coverage of electronics, MEMS, and instrumentation and control in mechanical engineering This second volume of Mechanical Engineers' Handbook covers electronics, MEMS, and instrumentation and control, giving you accessible and in-depth access to the topics you'll encounter in the discipline: computer-aided design, product design for manufacturing and assembly, design optimization, total quality management in mechanical system design, reliability in the mechanical design process for sustainability, life-cycle design, design for remanufacturing processes, signal processing, data acquisition and display systems, and much more. The book provides a quick guide to specialized areas you may encounter in your work, giving you access to the basics of each and pointing you toward trusted resources for further reading, if needed. The accessible information inside offers discussions, examples, and analyses of the topics covered, rather than the straight data, formulas, and calculations you'll find in other handbooks. Presents the most comprehensive coverage of the entire discipline of Mechanical Engineering anywhere in four interrelated books Offers the option of being purchased as a four-book set or as single books Comes in a subscription format through the Wiley Online Library and in electronic and custom formats Engineers at all levels will find Mechanical Engineers' Handbook, Volume 2 an excellent resource they can turn to for the basics of electronics, MEMS, and instrumentation and control.
Publisher: John Wiley & Sons
ISBN: 1118112830
Category : Technology & Engineering
Languages : en
Pages : 1008
Book Description
Full coverage of electronics, MEMS, and instrumentation and control in mechanical engineering This second volume of Mechanical Engineers' Handbook covers electronics, MEMS, and instrumentation and control, giving you accessible and in-depth access to the topics you'll encounter in the discipline: computer-aided design, product design for manufacturing and assembly, design optimization, total quality management in mechanical system design, reliability in the mechanical design process for sustainability, life-cycle design, design for remanufacturing processes, signal processing, data acquisition and display systems, and much more. The book provides a quick guide to specialized areas you may encounter in your work, giving you access to the basics of each and pointing you toward trusted resources for further reading, if needed. The accessible information inside offers discussions, examples, and analyses of the topics covered, rather than the straight data, formulas, and calculations you'll find in other handbooks. Presents the most comprehensive coverage of the entire discipline of Mechanical Engineering anywhere in four interrelated books Offers the option of being purchased as a four-book set or as single books Comes in a subscription format through the Wiley Online Library and in electronic and custom formats Engineers at all levels will find Mechanical Engineers' Handbook, Volume 2 an excellent resource they can turn to for the basics of electronics, MEMS, and instrumentation and control.
Adaptive Control Tutorial
Author: Petros Ioannou
Publisher: SIAM
ISBN: 0898716152
Category : Mathematics
Languages : en
Pages : 401
Book Description
Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index
Publisher: SIAM
ISBN: 0898716152
Category : Mathematics
Languages : en
Pages : 401
Book Description
Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index
Handbook of Reinforcement Learning and Control
Author: Kyriakos G. Vamvoudakis
Publisher: Springer Nature
ISBN: 3030609901
Category : Technology & Engineering
Languages : en
Pages : 833
Book Description
This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.
Publisher: Springer Nature
ISBN: 3030609901
Category : Technology & Engineering
Languages : en
Pages : 833
Book Description
This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.
Microgrid
Author: Magdi S. Mahmoud
Publisher: Elsevier
ISBN: 0081012624
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Microgrids: Advanced Control Methods and Renewable Energy System Integration demonstrates the state-of-art of methods and applications of microgrid control, with eleven concise and comprehensive chapters. The first three chapters provide an overview of the control methods of microgrid systems that is followed by a review of distributed control and management strategies for the next generation microgrids. Next, the book identifies future research directions and discusses the hierarchical power sharing control in DC Microgrids. Chapter 4 investigates the demand side management in microgrid control systems from various perspectives, followed by an outline of the operation and controls of the smart microgrids in Chapter 5. Chapter 6 deals with control of low-voltage microgrids with master/slave architecture. The final chapters explain the load-Frequency Controllers for Distributed Power System Generation Units and the issue of robust control design for VSIs, followed by a communication solution denoted as power talk. Finally, in Chapter 11, real-time implementation of distributed control for an autonomous microgrid system is performed. - Addresses issues of contemporary interest to practitioners in the power engineering and management fields - Focuses on the role of microgrids within the overall power system structure and attempts to clarify the main findings relating to primary and secondary control and management at the microgrid level - Provides results from a quantified assessment of benefits from economic, environmental, operational, and social point-of-views - Presents the hierarchical control levels manifested in microgrid operations and evaluates the principles and main functions of centralized and decentralized control
Publisher: Elsevier
ISBN: 0081012624
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Microgrids: Advanced Control Methods and Renewable Energy System Integration demonstrates the state-of-art of methods and applications of microgrid control, with eleven concise and comprehensive chapters. The first three chapters provide an overview of the control methods of microgrid systems that is followed by a review of distributed control and management strategies for the next generation microgrids. Next, the book identifies future research directions and discusses the hierarchical power sharing control in DC Microgrids. Chapter 4 investigates the demand side management in microgrid control systems from various perspectives, followed by an outline of the operation and controls of the smart microgrids in Chapter 5. Chapter 6 deals with control of low-voltage microgrids with master/slave architecture. The final chapters explain the load-Frequency Controllers for Distributed Power System Generation Units and the issue of robust control design for VSIs, followed by a communication solution denoted as power talk. Finally, in Chapter 11, real-time implementation of distributed control for an autonomous microgrid system is performed. - Addresses issues of contemporary interest to practitioners in the power engineering and management fields - Focuses on the role of microgrids within the overall power system structure and attempts to clarify the main findings relating to primary and secondary control and management at the microgrid level - Provides results from a quantified assessment of benefits from economic, environmental, operational, and social point-of-views - Presents the hierarchical control levels manifested in microgrid operations and evaluates the principles and main functions of centralized and decentralized control
Dynamic Optimization, Second Edition
Author: Morton I. Kamien
Publisher: Courier Corporation
ISBN: 0486310280
Category : Mathematics
Languages : en
Pages : 402
Book Description
Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.
Publisher: Courier Corporation
ISBN: 0486310280
Category : Mathematics
Languages : en
Pages : 402
Book Description
Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.
Adaptive Dynamic Programming: Single and Multiple Controllers
Author: Ruizhuo Song
Publisher: Springer
ISBN: 9811317127
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.
Publisher: Springer
ISBN: 9811317127
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.
Algorithms for Reinforcement Learning
Author: Csaba Grossi
Publisher: Springer Nature
ISBN: 3031015517
Category : Computers
Languages : en
Pages : 89
Book Description
Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration
Publisher: Springer Nature
ISBN: 3031015517
Category : Computers
Languages : en
Pages : 89
Book Description
Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration