Author: David C. Hoaglin
Publisher: John Wiley & Sons
ISBN: 1118150694
Category : Mathematics
Languages : en
Pages : 564
Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "Exploring Data Tables, Trends, and Shapes (EDTTS) was written as a companion volume to the same editors' book, Understanding Robust and Exploratory Data Analysis (UREDA). Whereas UREDA is a collection of exploratory and resistant methods of estimation and display, EDTTS goes a step further, describing multivariate and more complicated techniques . . . I feel that the authors have made a very significant contribution in the area of multivariate nonparametric methods. This book [is] a valuable source of reference to researchers in the area." —Technometrics "This edited volume . . . provides an important theoretical and philosophical extension to the currently popular statistical area of Exploratory Data Analysis, which seeks to reveal structure, or simple descriptions, in data . . . It is . . . an important reference volume which any statistical library should consider seriously." —The Statistician This newly available and affordably priced paperback version of Exploring Data Tables, Trends, and Shapes presents major advances in exploratory data analysis and robust regression methods and explains the techniques, relating them to classical methods. The book addresses the role of exploratory and robust techniques in the overall data-analytic enterprise, and it also presents new methods such as fitting by organized comparisons using the square combining table and identifying extreme cells in a sizable contingency table with probabilistic and exploratory approaches. The book features a chapter on using robust regression in less technical language than available elsewhere. Conceptual support for each technique is also provided.
An Empirical Investigation of the Behavior of Bounded-influence Regression Estimators
Author: Steven Arthur Edelstein
Publisher:
ISBN:
Category : Regression analysis
Languages : en
Pages : 306
Book Description
Publisher:
ISBN:
Category : Regression analysis
Languages : en
Pages : 306
Book Description
Exploring Data Tables, Trends, and Shapes
Author: David C. Hoaglin
Publisher: John Wiley & Sons
ISBN: 1118150694
Category : Mathematics
Languages : en
Pages : 564
Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "Exploring Data Tables, Trends, and Shapes (EDTTS) was written as a companion volume to the same editors' book, Understanding Robust and Exploratory Data Analysis (UREDA). Whereas UREDA is a collection of exploratory and resistant methods of estimation and display, EDTTS goes a step further, describing multivariate and more complicated techniques . . . I feel that the authors have made a very significant contribution in the area of multivariate nonparametric methods. This book [is] a valuable source of reference to researchers in the area." —Technometrics "This edited volume . . . provides an important theoretical and philosophical extension to the currently popular statistical area of Exploratory Data Analysis, which seeks to reveal structure, or simple descriptions, in data . . . It is . . . an important reference volume which any statistical library should consider seriously." —The Statistician This newly available and affordably priced paperback version of Exploring Data Tables, Trends, and Shapes presents major advances in exploratory data analysis and robust regression methods and explains the techniques, relating them to classical methods. The book addresses the role of exploratory and robust techniques in the overall data-analytic enterprise, and it also presents new methods such as fitting by organized comparisons using the square combining table and identifying extreme cells in a sizable contingency table with probabilistic and exploratory approaches. The book features a chapter on using robust regression in less technical language than available elsewhere. Conceptual support for each technique is also provided.
Publisher: John Wiley & Sons
ISBN: 1118150694
Category : Mathematics
Languages : en
Pages : 564
Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "Exploring Data Tables, Trends, and Shapes (EDTTS) was written as a companion volume to the same editors' book, Understanding Robust and Exploratory Data Analysis (UREDA). Whereas UREDA is a collection of exploratory and resistant methods of estimation and display, EDTTS goes a step further, describing multivariate and more complicated techniques . . . I feel that the authors have made a very significant contribution in the area of multivariate nonparametric methods. This book [is] a valuable source of reference to researchers in the area." —Technometrics "This edited volume . . . provides an important theoretical and philosophical extension to the currently popular statistical area of Exploratory Data Analysis, which seeks to reveal structure, or simple descriptions, in data . . . It is . . . an important reference volume which any statistical library should consider seriously." —The Statistician This newly available and affordably priced paperback version of Exploring Data Tables, Trends, and Shapes presents major advances in exploratory data analysis and robust regression methods and explains the techniques, relating them to classical methods. The book addresses the role of exploratory and robust techniques in the overall data-analytic enterprise, and it also presents new methods such as fitting by organized comparisons using the square combining table and identifying extreme cells in a sizable contingency table with probabilistic and exploratory approaches. The book features a chapter on using robust regression in less technical language than available elsewhere. Conceptual support for each technique is also provided.
The Work of Raymond J. Carroll
Author: Marie Davidian
Publisher: Springer
ISBN: 3319058010
Category : Mathematics
Languages : en
Pages : 599
Book Description
This volume contains Raymond J. Carroll's research and commentary on its impact by leading statisticians. Each of the seven main parts focuses on a key research area: Measurement Error, Transformation and Weighting, Epidemiology, Nonparametric and Semiparametric Regression for Independent Data, Nonparametric and Semiparametric Regression for Dependent Data, Robustness, and other work. The seven subject areas reviewed in this book were chosen by Ray himself, as were the articles representing each area. The commentaries not only review Ray’s work, but are also filled with history and anecdotes. Raymond J. Carroll’s impact on statistics and numerous other fields of science is far-reaching. His vast catalog of work spans from fundamental contributions to statistical theory to innovative methodological development and new insights in disciplinary science. From the outset of his career, rather than taking the “safe” route of pursuing incremental advances, Ray has focused on tackling the most important challenges. In doing so, it is fair to say that he has defined a host of statistics areas, including weighting and transformation in regression, measurement error modeling, quantitative methods for nutritional epidemiology and non- and semiparametric regression.
Publisher: Springer
ISBN: 3319058010
Category : Mathematics
Languages : en
Pages : 599
Book Description
This volume contains Raymond J. Carroll's research and commentary on its impact by leading statisticians. Each of the seven main parts focuses on a key research area: Measurement Error, Transformation and Weighting, Epidemiology, Nonparametric and Semiparametric Regression for Independent Data, Nonparametric and Semiparametric Regression for Dependent Data, Robustness, and other work. The seven subject areas reviewed in this book were chosen by Ray himself, as were the articles representing each area. The commentaries not only review Ray’s work, but are also filled with history and anecdotes. Raymond J. Carroll’s impact on statistics and numerous other fields of science is far-reaching. His vast catalog of work spans from fundamental contributions to statistical theory to innovative methodological development and new insights in disciplinary science. From the outset of his career, rather than taking the “safe” route of pursuing incremental advances, Ray has focused on tackling the most important challenges. In doing so, it is fair to say that he has defined a host of statistics areas, including weighting and transformation in regression, measurement error modeling, quantitative methods for nutritional epidemiology and non- and semiparametric regression.
Transformation and Weighting in Regression
Author: Raymond J. Carroll
Publisher: Routledge
ISBN: 1351407260
Category : Mathematics
Languages : en
Pages : 272
Book Description
This monograph provides a careful review of the major statistical techniques used to analyze regression data with nonconstant variability and skewness. The authors have developed statistical techniques--such as formal fitting methods and less formal graphical techniques-- that can be applied to many problems across a range of disciplines, including pharmacokinetics, econometrics, biochemical assays, and fisheries research. While the main focus of the book in on data transformation and weighting, it also draws upon ideas from diverse fields such as influence diagnostics, robustness, bootstrapping, nonparametric data smoothing, quasi-likelihood methods, errors-in-variables, and random coefficients. The authors discuss the computation of estimates and give numerous examples using real data. The book also includes an extensive treatment of estimating variance functions in regression.
Publisher: Routledge
ISBN: 1351407260
Category : Mathematics
Languages : en
Pages : 272
Book Description
This monograph provides a careful review of the major statistical techniques used to analyze regression data with nonconstant variability and skewness. The authors have developed statistical techniques--such as formal fitting methods and less formal graphical techniques-- that can be applied to many problems across a range of disciplines, including pharmacokinetics, econometrics, biochemical assays, and fisheries research. While the main focus of the book in on data transformation and weighting, it also draws upon ideas from diverse fields such as influence diagnostics, robustness, bootstrapping, nonparametric data smoothing, quasi-likelihood methods, errors-in-variables, and random coefficients. The authors discuss the computation of estimates and give numerous examples using real data. The book also includes an extensive treatment of estimating variance functions in regression.
Robust Statistics
Author: Frank R. Hampel
Publisher: John Wiley & Sons
ISBN: 1118150686
Category : Mathematics
Languages : en
Pages : 502
Book Description
The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.
Publisher: John Wiley & Sons
ISBN: 1118150686
Category : Mathematics
Languages : en
Pages : 502
Book Description
The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.
Handbook of Econometrics
Author: Zvi Griliches
Publisher: Elsevier
ISBN: 9780444861856
Category : Econometrics
Languages : en
Pages : 804
Book Description
The Handbook is a definitive reference source and teaching aid for econometricians. It examines models, estimation theory, data analysis and field applications in econometrics. Comprehensive surveys, written by experts, discuss recent developments at a level suitable for professional use by economists, econometricians, statisticians, and in advanced graduate econometrics courses.
Publisher: Elsevier
ISBN: 9780444861856
Category : Econometrics
Languages : en
Pages : 804
Book Description
The Handbook is a definitive reference source and teaching aid for econometricians. It examines models, estimation theory, data analysis and field applications in econometrics. Comprehensive surveys, written by experts, discuss recent developments at a level suitable for professional use by economists, econometricians, statisticians, and in advanced graduate econometrics courses.
Robust and Nonlinear Time Series Analysis
Author: J. Franke
Publisher: Springer Science & Business Media
ISBN: 1461578213
Category : Mathematics
Languages : en
Pages : 297
Book Description
Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide~sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to "second order" has of course been extremely popular from a theoretical point of view be cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica tion. They have none-the-less stressed the importance of such optimali ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum ed model.
Publisher: Springer Science & Business Media
ISBN: 1461578213
Category : Mathematics
Languages : en
Pages : 297
Book Description
Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide~sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to "second order" has of course been extremely popular from a theoretical point of view be cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica tion. They have none-the-less stressed the importance of such optimali ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum ed model.
Regression Diagnostics
Author: David A. Belsley
Publisher: John Wiley & Sons
ISBN: 0471725145
Category : Mathematics
Languages : en
Pages : 292
Book Description
The Wiley-Interscience Paperback Series consists of selected booksthat have been made more accessible to consumers in an effort toincrease global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "The title of the book more or less sums up the contents. Itappears to me to represent a real breakthrough in the art ofdealing in ‘unconventional’ data. . . . I found thewhole book both readable and enjoyable. It is suitable for dataanalysts, academic statisticians, and professional softwarewriters." –Journal of the Royal Statistical Society "The book assumes a working knowledge of all of the principalresults and techniques used in least squares multiple regression,as expressed in vector and matrix notation. Given this background,the book is clear and easy to use. . . . The techniques areillustrated in great detail with practical data sets fromeconometrics." –Short Book Reviews, International Statistical Institute Regression Diagnostics: Identifying Influential Data and Sourcesof Collinearity provides practicing statisticians andeconometricians with new tools for assessing quality andreliability of regression estimates. Diagnostic techniques aredeveloped that aid in the systematic location of data points thatare unusual or inordinately influential; measure the presence andintensity of collinear relations among the regression data; andhelp to identify variables involved in each and pinpoint estimatedcoefficients potentially most adversely affected. The bookemphasizes diagnostics and includes suggestions for remedialaction
Publisher: John Wiley & Sons
ISBN: 0471725145
Category : Mathematics
Languages : en
Pages : 292
Book Description
The Wiley-Interscience Paperback Series consists of selected booksthat have been made more accessible to consumers in an effort toincrease global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "The title of the book more or less sums up the contents. Itappears to me to represent a real breakthrough in the art ofdealing in ‘unconventional’ data. . . . I found thewhole book both readable and enjoyable. It is suitable for dataanalysts, academic statisticians, and professional softwarewriters." –Journal of the Royal Statistical Society "The book assumes a working knowledge of all of the principalresults and techniques used in least squares multiple regression,as expressed in vector and matrix notation. Given this background,the book is clear and easy to use. . . . The techniques areillustrated in great detail with practical data sets fromeconometrics." –Short Book Reviews, International Statistical Institute Regression Diagnostics: Identifying Influential Data and Sourcesof Collinearity provides practicing statisticians andeconometricians with new tools for assessing quality andreliability of regression estimates. Diagnostic techniques aredeveloped that aid in the systematic location of data points thatare unusual or inordinately influential; measure the presence andintensity of collinear relations among the regression data; andhelp to identify variables involved in each and pinpoint estimatedcoefficients potentially most adversely affected. The bookemphasizes diagnostics and includes suggestions for remedialaction
Robust Regression
Author: Kenneth D. Lawrence
Publisher: Routledge
ISBN: 1351418289
Category : Mathematics
Languages : en
Pages : 310
Book Description
Robust Regression: Analysis and Applications characterizes robust estimators in terms of how much they weight each observation discusses generalized properties of Lp-estimators. Includes an algorithm for identifying outliers using least absolute value criterion in regression modeling reviews redescending M-estimators studies Li linear regression proposes the best linear unbiased estimators for fixed parameters and random errors in the mixed linear model summarizes known properties of Li estimators for time series analysis examines ordinary least squares, latent root regression, and a robust regression weighting scheme and evaluates results from five different robust ridge regression estimators.
Publisher: Routledge
ISBN: 1351418289
Category : Mathematics
Languages : en
Pages : 310
Book Description
Robust Regression: Analysis and Applications characterizes robust estimators in terms of how much they weight each observation discusses generalized properties of Lp-estimators. Includes an algorithm for identifying outliers using least absolute value criterion in regression modeling reviews redescending M-estimators studies Li linear regression proposes the best linear unbiased estimators for fixed parameters and random errors in the mixed linear model summarizes known properties of Li estimators for time series analysis examines ordinary least squares, latent root regression, and a robust regression weighting scheme and evaluates results from five different robust ridge regression estimators.
Directions in Robust Statistics and Diagnostics
Author: Werner Stahel
Publisher: Springer Science & Business Media
ISBN: 1461244447
Category : Mathematics
Languages : en
Pages : 384
Book Description
This IMA Volume in Mathematics and its Applications DIRECTIONS IN ROBUST STATISTICS AND DIAGNOSTICS is based on the proceedings of the first four weeks of the six week IMA 1989 summer program "Robustness, Diagnostics, Computing and Graphics in Statistics". An important objective of the organizers was to draw a broad set of statisticians working in robustness or diagnostics into collaboration on the challenging problems in these areas, particularly on the interface between them. We thank the organizers of the robustness and diagnostics program Noel Cressie, Thomas P. Hettmansperger, Peter J. Huber, R. Douglas Martin, and especially Werner Stahel and Sanford Weisberg who edited the proceedings. A vner Friedman Willard Miller, Jr. PREFACE Central themes of all statistics are estimation, prediction, and making decisions under uncertainty. A standard approach to these goals is through parametric mod elling. Parametric models can give a problem sufficient structure to allow standard, well understood paradigms to be applied to make the required inferences. If, how ever, the parametric model is not completely correct, then the standard inferential methods may not give reasonable answers. In the last quarter century, particularly with the advent of readily available computing, more attention has been paid to the problem of inference when the parametric model used is not correctly specified.
Publisher: Springer Science & Business Media
ISBN: 1461244447
Category : Mathematics
Languages : en
Pages : 384
Book Description
This IMA Volume in Mathematics and its Applications DIRECTIONS IN ROBUST STATISTICS AND DIAGNOSTICS is based on the proceedings of the first four weeks of the six week IMA 1989 summer program "Robustness, Diagnostics, Computing and Graphics in Statistics". An important objective of the organizers was to draw a broad set of statisticians working in robustness or diagnostics into collaboration on the challenging problems in these areas, particularly on the interface between them. We thank the organizers of the robustness and diagnostics program Noel Cressie, Thomas P. Hettmansperger, Peter J. Huber, R. Douglas Martin, and especially Werner Stahel and Sanford Weisberg who edited the proceedings. A vner Friedman Willard Miller, Jr. PREFACE Central themes of all statistics are estimation, prediction, and making decisions under uncertainty. A standard approach to these goals is through parametric mod elling. Parametric models can give a problem sufficient structure to allow standard, well understood paradigms to be applied to make the required inferences. If, how ever, the parametric model is not completely correct, then the standard inferential methods may not give reasonable answers. In the last quarter century, particularly with the advent of readily available computing, more attention has been paid to the problem of inference when the parametric model used is not correctly specified.