Graph Representation Learning PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Graph Representation Learning PDF full book. Access full book title Graph Representation Learning by William L. William L. Hamilton. Download full books in PDF and EPUB format.

Graph Representation Learning

Graph Representation Learning PDF Author: William L. William L. Hamilton
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141

Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Graph Representation Learning

Graph Representation Learning PDF Author: William L. William L. Hamilton
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141

Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Representation Learning for Natural Language Processing

Representation Learning for Natural Language Processing PDF Author: Zhiyuan Liu
Publisher: Springer Nature
ISBN: 9811555737
Category : Computers
Languages : en
Pages : 319

Book Description
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.

Representation Learning

Representation Learning PDF Author: Nada Lavrač
Publisher: Springer Nature
ISBN: 3030688178
Category : Computers
Languages : en
Pages : 175

Book Description
This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.

Handbook of Learning from Multiple Representations and Perspectives

Handbook of Learning from Multiple Representations and Perspectives PDF Author: Peggy Van Meter
Publisher: Routledge
ISBN: 0429813651
Category : Education
Languages : en
Pages : 696

Book Description
In and out of formal schooling, online and off, today’s learners must consume and integrate a level of information that is exponentially larger and delivered through a wider range of formats and viewpoints than ever before. The Handbook of Learning from Multiple Representations and Perspectives provides a path for understanding the cognitive, motivational, and socioemotional processes and skills necessary for learners across educational contexts to make sense of and use information sourced from varying inputs. Uniting research and theory from education, psychology, literacy, library sciences, media and technology, and more, this forward-thinking volume explores the common concerns, shared challenges, and thematic patterns in our capacity to make meaning in an information-rich society. Chapter 16 of this book is freely available as a downloadable Open Access PDF under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license available at http://www.taylorfrancis.com/books/e/9780429443961.

Multiple Representations in Physics Education

Multiple Representations in Physics Education PDF Author: David F. Treagust
Publisher: Springer
ISBN: 3319589148
Category : Science
Languages : en
Pages : 329

Book Description
This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in different levels of the education system and in different physics topics using analogies and models, different modes, and in reasoning and representational competence. When multiple representations are used in physics for teaching, the expectation is that they should be successful. To ensure this is the case, the implementation of representations should consider design principles for using multiple representations. Investigations regarding their effect on classroom communication as well as on the learning results in all levels of schooling and for different topics of physics are reported. The book is intended for physics educators and their students at universities and for physics teachers in schools to apply multiple representations in physics in a productive way.

Knowing, Learning, and Instruction

Knowing, Learning, and Instruction PDF Author: Lauren B. Resnick
Publisher: Psychology Press
ISBN: 9780805804607
Category : Education
Languages : en
Pages : 536

Book Description
Celebrating the 20th anniversary of the Learning Research and Development Center (RDC) at the University of Pittsburgh, these papers present contemporary research on cognition and instruction. The book pays homage to Robert Glaser, foudner of LRDC, and includes debates and discussions about issues of fundamental importance to the cognitive science of instruction.

Understanding Deep Learning

Understanding Deep Learning PDF Author: Simon J.D. Prince
Publisher: MIT Press
ISBN: 0262377101
Category : Computers
Languages : en
Pages : 544

Book Description
An authoritative, accessible, and up-to-date treatment of deep learning that strikes a pragmatic middle ground between theory and practice. Deep learning is a fast-moving field with sweeping relevance in today’s increasingly digital world. Understanding Deep Learning provides an authoritative, accessible, and up-to-date treatment of the subject, covering all the key topics along with recent advances and cutting-edge concepts. Many deep learning texts are crowded with technical details that obscure fundamentals, but Simon Prince ruthlessly curates only the most important ideas to provide a high density of critical information in an intuitive and digestible form. From machine learning basics to advanced models, each concept is presented in lay terms and then detailed precisely in mathematical form and illustrated visually. The result is a lucid, self-contained textbook suitable for anyone with a basic background in applied mathematics. Up-to-date treatment of deep learning covers cutting-edge topics not found in existing texts, such as transformers and diffusion models Short, focused chapters progress in complexity, easing students into difficult concepts Pragmatic approach straddling theory and practice gives readers the level of detail required to implement naive versions of models Streamlined presentation separates critical ideas from background context and extraneous detail Minimal mathematical prerequisites, extensive illustrations, and practice problems make challenging material widely accessible Programming exercises offered in accompanying Python Notebooks

Heterogeneous Graph Representation Learning and Applications

Heterogeneous Graph Representation Learning and Applications PDF Author: Chuan Shi
Publisher: Springer Nature
ISBN: 9811661669
Category : Computers
Languages : en
Pages : 329

Book Description
Representation learning in heterogeneous graphs (HG) is intended to provide a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the need to incorporate heterogeneous structural (graph) information consisting of multiple types of node and edge, but also the need to consider heterogeneous attributes or types of content (e.g. text or image) associated with each node. Although considerable advances have been made in homogeneous (and heterogeneous) graph embedding, attributed graph embedding and graph neural networks, few are capable of simultaneously and effectively taking into account heterogeneous structural (graph) information as well as the heterogeneous content information of each node. In this book, we provide a comprehensive survey of current developments in HG representation learning. More importantly, we present the state-of-the-art in this field, including theoretical models and real applications that have been showcased at the top conferences and journals, such as TKDE, KDD, WWW, IJCAI and AAAI. The book has two major objectives: (1) to provide researchers with an understanding of the fundamental issues and a good point of departure for working in this rapidly expanding field, and (2) to present the latest research on applying heterogeneous graphs to model real systems and learning structural features of interaction systems. To the best of our knowledge, it is the first book to summarize the latest developments and present cutting-edge research on heterogeneous graph representation learning. To gain the most from it, readers should have a basic grasp of computer science, data mining and machine learning.

Computer Vision – ECCV 2022

Computer Vision – ECCV 2022 PDF Author: Shai Avidan
Publisher: Springer Nature
ISBN: 3031200500
Category : Computers
Languages : en
Pages : 820

Book Description
The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Advances in Artificial Intelligence, Big Data and Algorithms

Advances in Artificial Intelligence, Big Data and Algorithms PDF Author: G. Grigoras
Publisher: IOS Press
ISBN: 1643684450
Category : Computers
Languages : en
Pages : 1224

Book Description
Computers and automation have revolutionized the lives of most people in the last two decades, and terminology such as algorithms, big data and artificial intelligence have become part of our everyday discourse. This book presents the proceedings of CAIBDA 2023, the 3rd International Conference on Artificial Intelligence, Big Data and Algorithms, held from 16 - 18 June 2023 as a hybrid conference in Zhengzhou, China. The conference provided a platform for some 200 participants to discuss the theoretical and computational aspects of research in artificial intelligence, big data and algorithms, reviewing the present status and future perspectives of the field. A total of 362 submissions were received for the conference, of which 148 were accepted following a thorough double-blind peer review. Topics covered at the conference included artificial intelligence tools and applications; intelligent estimation and classification; representation formats for multimedia big data; high-performance computing; and mathematical and computer modeling, among others. The book provides a comprehensive overview of this fascinating field, exploring future scenarios and highlighting areas where new ideas have emerged over recent years. It will be of interest to all those whose work involves artificial intelligence, big data and algorithms.