Differential Equations & Linear Algebra PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Differential Equations & Linear Algebra PDF full book. Access full book title Differential Equations & Linear Algebra by Charles Henry Edwards. Download full books in PDF and EPUB format.

Differential Equations & Linear Algebra

Differential Equations & Linear Algebra PDF Author: Charles Henry Edwards
Publisher:
ISBN: 9780138141028
Category : Algebras, Linear
Languages : en
Pages : 762

Book Description
For courses in Differential Equations and Linear Algebra. Acclaimed authors Edwards and Penney combine core topics in elementary differential equations with those concepts and methods of elementary linear algebra needed for a contemporary combined introduction to differential equations and linear algebra. Known for its real-world applications and its blend of algebraic and geometric approaches, this text discusses mathematical modeling of real-world phenomena, with a fresh new computational and qualitative flavor evident throughout in figures, examples, problems, and applications. In the Third Edition, new graphics and narrative have been added as needed-yet the proven chapter and section structure remains unchanged, so that class notes and syllabi will not require revision for the new edition.

Differential Equations & Linear Algebra

Differential Equations & Linear Algebra PDF Author: Charles Henry Edwards
Publisher:
ISBN: 9780138141028
Category : Algebras, Linear
Languages : en
Pages : 762

Book Description
For courses in Differential Equations and Linear Algebra. Acclaimed authors Edwards and Penney combine core topics in elementary differential equations with those concepts and methods of elementary linear algebra needed for a contemporary combined introduction to differential equations and linear algebra. Known for its real-world applications and its blend of algebraic and geometric approaches, this text discusses mathematical modeling of real-world phenomena, with a fresh new computational and qualitative flavor evident throughout in figures, examples, problems, and applications. In the Third Edition, new graphics and narrative have been added as needed-yet the proven chapter and section structure remains unchanged, so that class notes and syllabi will not require revision for the new edition.

Two-Point Boundary Value Problems: Lower and Upper Solutions

Two-Point Boundary Value Problems: Lower and Upper Solutions PDF Author: C. De Coster
Publisher: Elsevier
ISBN: 0080462472
Category : Mathematics
Languages : en
Pages : 502

Book Description
This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes

Ordinary Differential Equations

Ordinary Differential Equations PDF Author: Philip Hartman
Publisher: SIAM
ISBN: 9780898719222
Category : Mathematics
Languages : en
Pages : 612

Book Description
Ordinary Differential Equations covers the fundamentals of the theory of ordinary differential equations (ODEs), including an extensive discussion of the integration of differential inequalities, on which this theory relies heavily. In addition to these results, the text illustrates techniques involving simple topological arguments, fixed point theorems, and basic facts of functional analysis. Unlike many texts, which supply only the standard simplified theorems, this book presents the basic theory of ODEs in a general way. This SIAM reissue of the 1982 second edition covers invariant manifolds, perturbations, and dichotomies, making the text relevant to current studies of geometrical theory of differential equations and dynamical systems. In particular, Ordinary Differential Equations includes the proof of the Hartman-Grobman theorem on the equivalence of a nonlinear to a linear flow in the neighborhood of a hyperbolic stationary point, as well as theorems on smooth equivalences, the smoothness of invariant manifolds, and the reduction of problems on ODEs to those on "maps" (Poincaré). Audience: readers should have knowledge of matrix theory and the ability to deal with functions of real variables.

Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems PDF Author: Gerald Teschl
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370

Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations PDF Author: Kendall Atkinson
Publisher: John Wiley & Sons
ISBN: 1118164520
Category : Mathematics
Languages : en
Pages : 272

Book Description
A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Partial Differential Equations

Partial Differential Equations PDF Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467

Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Basic Theory of Ordinary Differential Equations

Basic Theory of Ordinary Differential Equations PDF Author: Po-Fang Hsieh
Publisher: Springer Science & Business Media
ISBN: 1461215064
Category : Mathematics
Languages : en
Pages : 480

Book Description
Providing readers with the very basic knowledge necessary to begin research on differential equations with professional ability, the selection of topics here covers the methods and results that are applicable in a variety of different fields. The book is divided into four parts. The first covers fundamental existence, uniqueness, smoothness with respect to data, and nonuniqueness. The second part describes the basic results concerning linear differential equations, while the third deals with nonlinear equations. In the last part the authors write about the basic results concerning power series solutions. Each chapter begins with a brief discussion of its contents and history, and hints and comments for many problems are given throughout. With 114 illustrations and 206 exercises, the book is suitable for a one-year graduate course, as well as a reference book for research mathematicians.

Introduction to Smooth Manifolds

Introduction to Smooth Manifolds PDF Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 0387217525
Category : Mathematics
Languages : en
Pages : 646

Book Description
Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why

A First Course in Ordinary Differential Equations

A First Course in Ordinary Differential Equations PDF Author: Suman Kumar Tumuluri
Publisher: CRC Press
ISBN: 100035671X
Category : Mathematics
Languages : en
Pages : 338

Book Description
A First course in Ordinary Differential Equations provides a detailed introduction to the subject focusing on analytical methods to solve ODEs and theoretical aspects of analyzing them when it is difficult/not possible to find their solutions explicitly. This two-fold treatment of the subject is quite handy not only for undergraduate students in mathematics but also for physicists, engineers who are interested in understanding how various methods to solve ODEs work. More than 300 end-of-chapter problems with varying difficulty are provided so that the reader can self examine their understanding of the topics covered in the text. Most of the definitions and results used from subjects like real analysis, linear algebra are stated clearly in the book. This enables the book to be accessible to physics and engineering students also. Moreover, sufficient number of worked out examples are presented to illustrate every new technique introduced in this book. Moreover, the author elucidates the importance of various hypotheses in the results by providing counter examples. Features Offers comprehensive coverage of all essential topics required for an introductory course in ODE. Emphasizes on both computation of solutions to ODEs as well as the theoretical concepts like well-posedness, comparison results, stability etc. Systematic presentation of insights of the nature of the solutions to linear/non-linear ODEs. Special attention on the study of asymptotic behavior of solutions to autonomous ODEs (both for scalar case and 2✕2 systems). Sufficient number of examples are provided wherever a notion is introduced. Contains a rich collection of problems. This book serves as a text book for undergraduate students and a reference book for scientists and engineers. Broad coverage and clear presentation of the material indeed appeals to the readers. Dr. Suman K. Tumuluri has been working in University of Hyderabad, India, for 11 years and at present he is an associate professor. His research interests include applications of partial differential equations in population dynamics and fluid dynamics.

A Textbook on Ordinary Differential Equations

A Textbook on Ordinary Differential Equations PDF Author: Shair Ahmad
Publisher: Springer
ISBN: 3319164082
Category : Mathematics
Languages : en
Pages : 337

Book Description
This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, which may be suitable for more advanced undergraduate or first-year graduate students. The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.