Author: J. Hutcheon
Publisher: CRC Press
ISBN: 1482271230
Category : Architecture
Languages : en
Pages : 420
Book Description
First published in 1981 as the Offshore Information Guide this guide to information sources has been hailed internationally as an indispensable handbook for the oil, gas and marine industries.
Petroleum and Marine Technology Information Guide
Proceedings of the ... International Conference on Offshore Mechanics and Arctic Engineering
Sea Ice
Author: Mohammed Shokr
Publisher: John Wiley & Sons
ISBN: 1119027888
Category : Science
Languages : en
Pages : 600
Book Description
Sea Ice: Physics and Remote Sensing addresses experiences acquired mainly in Canada by researchers in the fields of ice physics and growth history in relation to its polycrystalline structure as well as ice parameters retrieval from remote sensing observations. The volume describes processes operating at the macro- and microscale (e.g., brine entrapment in sea ice, crystallographic texture of ice types, brine drainage mechanisms, etc.). The information is supported by high-quality photographs of ice thin-sections prepared from cores of different ice types, all obtained by leading experts during field experiments in the 1970s through the 1990s, using photographic cameras and scanning microscopy. In addition, this volume presents techniques to retrieve a suite of sea ice parameters (e.g. ice type, concentration, extent, thickness, surface temperature, surface deformation, etc.) from space-borne and airborne sensor data. The breadth of the material on this subject is designed to appeal to researchers and users of remote sensing data who want to develop quick familiarity with the capabilities of this technology or detailed knowledge about major techniques for retrieval of key ice parameters. Volume highlights include: Detailed crystallographic classification of natural sea ice, the key information from which information about ice growth conditions can be inferred. Many examples are presented with material to support qualitative and quantitative interpretation of the data. Methods developed for revealing microstructural characteristics of sea ice and performing forensic investigations. Data sets on radiative properties and satellite observations of sea ice, its snow cover, and surrounding open water. Methods of retrieval of ice surface features and geophysical parameters from remote sensing observations with a focus on critical issues such as the suitability of different sensors for different tasks and data synergism. Sea Ice: Physics and Remote Sensing is intended for a variety of sea ice audiences interested in different aspects of ice related to physics, geophysics, remote sensing, operational monitoring, mechanics, and cryospheric sciences.
Publisher: John Wiley & Sons
ISBN: 1119027888
Category : Science
Languages : en
Pages : 600
Book Description
Sea Ice: Physics and Remote Sensing addresses experiences acquired mainly in Canada by researchers in the fields of ice physics and growth history in relation to its polycrystalline structure as well as ice parameters retrieval from remote sensing observations. The volume describes processes operating at the macro- and microscale (e.g., brine entrapment in sea ice, crystallographic texture of ice types, brine drainage mechanisms, etc.). The information is supported by high-quality photographs of ice thin-sections prepared from cores of different ice types, all obtained by leading experts during field experiments in the 1970s through the 1990s, using photographic cameras and scanning microscopy. In addition, this volume presents techniques to retrieve a suite of sea ice parameters (e.g. ice type, concentration, extent, thickness, surface temperature, surface deformation, etc.) from space-borne and airborne sensor data. The breadth of the material on this subject is designed to appeal to researchers and users of remote sensing data who want to develop quick familiarity with the capabilities of this technology or detailed knowledge about major techniques for retrieval of key ice parameters. Volume highlights include: Detailed crystallographic classification of natural sea ice, the key information from which information about ice growth conditions can be inferred. Many examples are presented with material to support qualitative and quantitative interpretation of the data. Methods developed for revealing microstructural characteristics of sea ice and performing forensic investigations. Data sets on radiative properties and satellite observations of sea ice, its snow cover, and surrounding open water. Methods of retrieval of ice surface features and geophysical parameters from remote sensing observations with a focus on critical issues such as the suitability of different sensors for different tasks and data synergism. Sea Ice: Physics and Remote Sensing is intended for a variety of sea ice audiences interested in different aspects of ice related to physics, geophysics, remote sensing, operational monitoring, mechanics, and cryospheric sciences.
Engineering Physics of High-Temperature Materials
Author: Nirmal K. Sinha
Publisher: John Wiley & Sons
ISBN: 1119420466
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
ENGINEERING PHYSICS OF HIGH-TEMPERATURE MATERIALS Discover a comprehensive exploration of high temperature materials written by leading materials scientists In Engineering Physics of High-Temperature Materials: Metals, Ice, Rocks, and Ceramics distinguished researchers and authors Nirmal K. Sinha and Shoma Sinha deliver a rigorous and wide-ranging discussion of the behavior of different materials at high temperatures. The book discusses a variety of physical phenomena, from plate tectonics and polar sea ice to ice-age and intraglacial depression and the postglacial rebound of Earth’s crust, stress relaxation at high temperatures, and microstructure and crack-enhanced Elasto Delayed Elastic Viscous (EDEV) models. At a very high level, Engineering Physics of High-Temperature Materials (EPHTM) takes a multidisciplinary view of the behavior of materials at temperatures close to their melting point. The volume particularly focuses on a powerful model called the Elasto-Delayed-Elastic-Viscous (EDEV) model that can be used to study a variety of inorganic materials ranging from snow and ice, metals, including complex gas-turbine engine materials, as well as natural rocks and earth formations (tectonic processes). It demonstrates how knowledge gained in one field of study can have a strong impact on other fields. Engineering Physics of High-Temperature Materials will be of interest to a broad range of specialists, including earth scientists, volcanologists, cryospheric and interdisciplinary climate scientists, and solid-earth geophysicists. The book demonstrates that apparently dissimilar polycrystalline materials, including metals, alloys, ice, rocks, ceramics, and glassy materials, all behave in a surprisingly similar way at high temperatures. This similarity makes the information contained in the book valuable to all manner of physical scientists. Readers will also benefit from the inclusion of: A thorough introduction to the importance of a unified model of high temperature material behavior, including high temperature deformation and the strength of materials An exploration of the nature of crystalline substances for engineering applications, including basic materials classification, solid state materials, and general physical principles Discussions of forensic physical materialogy and test techniques and test systems Examinations of creep fundamentals, including rheology and rheological terminology, and phenomenological creep failure models Perfect for materials scientists, metallurgists, and glaciologists, Engineering Physics of High-Temperature Materials: Metals, Ice, Rocks, and Ceramics will also earn a place in the libraries of specialists in the nuclear, chemical, and aerospace industries with an interest in the physics and engineering of high-temperature materials.
Publisher: John Wiley & Sons
ISBN: 1119420466
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
ENGINEERING PHYSICS OF HIGH-TEMPERATURE MATERIALS Discover a comprehensive exploration of high temperature materials written by leading materials scientists In Engineering Physics of High-Temperature Materials: Metals, Ice, Rocks, and Ceramics distinguished researchers and authors Nirmal K. Sinha and Shoma Sinha deliver a rigorous and wide-ranging discussion of the behavior of different materials at high temperatures. The book discusses a variety of physical phenomena, from plate tectonics and polar sea ice to ice-age and intraglacial depression and the postglacial rebound of Earth’s crust, stress relaxation at high temperatures, and microstructure and crack-enhanced Elasto Delayed Elastic Viscous (EDEV) models. At a very high level, Engineering Physics of High-Temperature Materials (EPHTM) takes a multidisciplinary view of the behavior of materials at temperatures close to their melting point. The volume particularly focuses on a powerful model called the Elasto-Delayed-Elastic-Viscous (EDEV) model that can be used to study a variety of inorganic materials ranging from snow and ice, metals, including complex gas-turbine engine materials, as well as natural rocks and earth formations (tectonic processes). It demonstrates how knowledge gained in one field of study can have a strong impact on other fields. Engineering Physics of High-Temperature Materials will be of interest to a broad range of specialists, including earth scientists, volcanologists, cryospheric and interdisciplinary climate scientists, and solid-earth geophysicists. The book demonstrates that apparently dissimilar polycrystalline materials, including metals, alloys, ice, rocks, ceramics, and glassy materials, all behave in a surprisingly similar way at high temperatures. This similarity makes the information contained in the book valuable to all manner of physical scientists. Readers will also benefit from the inclusion of: A thorough introduction to the importance of a unified model of high temperature material behavior, including high temperature deformation and the strength of materials An exploration of the nature of crystalline substances for engineering applications, including basic materials classification, solid state materials, and general physical principles Discussions of forensic physical materialogy and test techniques and test systems Examinations of creep fundamentals, including rheology and rheological terminology, and phenomenological creep failure models Perfect for materials scientists, metallurgists, and glaciologists, Engineering Physics of High-Temperature Materials: Metals, Ice, Rocks, and Ceramics will also earn a place in the libraries of specialists in the nuclear, chemical, and aerospace industries with an interest in the physics and engineering of high-temperature materials.
International Workshop on Corrosion Control for Marine Structures and Pipelines
Author:
Publisher:
ISBN:
Category : Corrosion and anti-corrosives
Languages : en
Pages : 552
Book Description
Publisher:
ISBN:
Category : Corrosion and anti-corrosives
Languages : en
Pages : 552
Book Description
Proceedings - Offshore Technology Conference
Hydro-elasticity in Marine Technology
Author: O. Faltinsen
Publisher: Routledge
ISBN: 1351439855
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
In considering hydro-elasticity in marine technology, this text covers proceedings papers on risers of floating production platforms, cables, pipelines, flexible containers, seal bag system of surface effect ships, slamming on ships, whipping, and springing of ships, TLPs and very large floating structures.
Publisher: Routledge
ISBN: 1351439855
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
In considering hydro-elasticity in marine technology, this text covers proceedings papers on risers of floating production platforms, cables, pipelines, flexible containers, seal bag system of surface effect ships, slamming on ships, whipping, and springing of ships, TLPs and very large floating structures.
Advances in Fatigue Lifetime Predictive Techniques
Author: Michael R. Mitchell
Publisher: ASTM International
ISBN: 0803114230
Category : Fracture mechanics
Languages : en
Pages : 495
Book Description
Twenty-seven papers from fatigue researchers and practitioners review in detail recent progress in the development of methods to predict fatigue performance of materials and structures and to assess the extent to which these new methods are finding their way into practice. The papers, from the ASTM
Publisher: ASTM International
ISBN: 0803114230
Category : Fracture mechanics
Languages : en
Pages : 495
Book Description
Twenty-seven papers from fatigue researchers and practitioners review in detail recent progress in the development of methods to predict fatigue performance of materials and structures and to assess the extent to which these new methods are finding their way into practice. The papers, from the ASTM
Canadian Geotechnical Journal
Bulletin
Author: Welding Research Council (U.S.)
Publisher:
ISBN:
Category : Welding
Languages : en
Pages : 640
Book Description
Publisher:
ISBN:
Category : Welding
Languages : en
Pages : 640
Book Description