Numerical Differential Equations: Theory And Technique, Ode Methods, Finite Differences, Finite Elements And Collocation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Numerical Differential Equations: Theory And Technique, Ode Methods, Finite Differences, Finite Elements And Collocation PDF full book. Access full book title Numerical Differential Equations: Theory And Technique, Ode Methods, Finite Differences, Finite Elements And Collocation by John Loustau. Download full books in PDF and EPUB format.

Numerical Differential Equations: Theory And Technique, Ode Methods, Finite Differences, Finite Elements And Collocation

Numerical Differential Equations: Theory And Technique, Ode Methods, Finite Differences, Finite Elements And Collocation PDF Author: John Loustau
Publisher: World Scientific
ISBN: 981471951X
Category : Mathematics
Languages : en
Pages : 384

Book Description
This text presents numerical differential equations to graduate (doctoral) students. It includes the three standard approaches to numerical PDE, FDM, FEM and CM, and the two most common time stepping techniques, FDM and Runge-Kutta. We present both the numerical technique and the supporting theory.The applied techniques include those that arise in the present literature. The supporting mathematical theory includes the general convergence theory. This material should be readily accessible to students with basic knowledge of mathematical analysis, Lebesgue measure and the basics of Hilbert spaces and Banach spaces. Nevertheless, we have made the book free standing in most respects. Most importantly, the terminology is introduced, explained and developed as needed.The examples presented are taken from multiple vital application areas including finance, aerospace, mathematical biology and fluid mechanics. The text may be used as the basis for several distinct lecture courses or as a reference. For instance, this text will support a general applications course or an FEM course with theory and applications. The presentation of material is empirically-based as more and more is demanded of the reader as we progress through the material. By the end of the text, the level of detail is reminiscent of journal articles. Indeed, it is our intention that this material be used to launch a research career in numerical PDE.

Numerical Differential Equations: Theory And Technique, Ode Methods, Finite Differences, Finite Elements And Collocation

Numerical Differential Equations: Theory And Technique, Ode Methods, Finite Differences, Finite Elements And Collocation PDF Author: John Loustau
Publisher: World Scientific
ISBN: 981471951X
Category : Mathematics
Languages : en
Pages : 384

Book Description
This text presents numerical differential equations to graduate (doctoral) students. It includes the three standard approaches to numerical PDE, FDM, FEM and CM, and the two most common time stepping techniques, FDM and Runge-Kutta. We present both the numerical technique and the supporting theory.The applied techniques include those that arise in the present literature. The supporting mathematical theory includes the general convergence theory. This material should be readily accessible to students with basic knowledge of mathematical analysis, Lebesgue measure and the basics of Hilbert spaces and Banach spaces. Nevertheless, we have made the book free standing in most respects. Most importantly, the terminology is introduced, explained and developed as needed.The examples presented are taken from multiple vital application areas including finance, aerospace, mathematical biology and fluid mechanics. The text may be used as the basis for several distinct lecture courses or as a reference. For instance, this text will support a general applications course or an FEM course with theory and applications. The presentation of material is empirically-based as more and more is demanded of the reader as we progress through the material. By the end of the text, the level of detail is reminiscent of journal articles. Indeed, it is our intention that this material be used to launch a research career in numerical PDE.

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations PDF Author: Zhilin Li
Publisher: Cambridge University Press
ISBN: 1107163226
Category : Mathematics
Languages : en
Pages : 305

Book Description
A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.

Elements Of Numerical Analysis With Mathematica

Elements Of Numerical Analysis With Mathematica PDF Author: John Loustau
Publisher: World Scientific Publishing Company
ISBN: 9813222735
Category : Mathematics
Languages : en
Pages : 164

Book Description
Here we present numerical analysis to advanced undergraduate and master degree level grad students. This is to be done in one semester. The programming language is Mathematica. The mathematical foundation and technique is included. The emphasis is geared toward the two major developing areas of applied mathematics, mathematical finance and mathematical biology.

A First Course in the Numerical Analysis of Differential Equations

A First Course in the Numerical Analysis of Differential Equations PDF Author: A. Iserles
Publisher: Cambridge University Press
ISBN: 0521734908
Category : Mathematics
Languages : en
Pages : 481

Book Description
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations PDF Author: Kendall Atkinson
Publisher: John Wiley & Sons
ISBN: 1118164520
Category : Mathematics
Languages : en
Pages : 272

Book Description
A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Numerical Methods for Solving Partial Differential Equations

Numerical Methods for Solving Partial Differential Equations PDF Author: George F. Pinder
Publisher: John Wiley & Sons
ISBN: 1119316383
Category : Technology & Engineering
Languages : en
Pages : 414

Book Description
A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356

Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Numerical Solution of Partial Differential Equations in Science and Engineering

Numerical Solution of Partial Differential Equations in Science and Engineering PDF Author: Leon Lapidus
Publisher: John Wiley & Sons
ISBN: 1118031210
Category : Mathematics
Languages : en
Pages : 677

Book Description
From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.

The Calculus of Finite Differences

The Calculus of Finite Differences PDF Author: H. C. Saxena
Publisher:
ISBN:
Category : Actuarial sciences
Languages : en
Pages : 176

Book Description


Finite Difference Methods in Financial Engineering

Finite Difference Methods in Financial Engineering PDF Author: Daniel J. Duffy
Publisher: John Wiley & Sons
ISBN: 1118856481
Category : Business & Economics
Languages : en
Pages : 452

Book Description
The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.