Unit Equations in Diophantine Number Theory

Unit Equations in Diophantine Number Theory PDF Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
ISBN: 1107097606
Category : Mathematics
Languages : en
Pages : 381

Book Description
A comprehensive, graduate-level treatment of unit equations and their various applications.

An Introduction to Diophantine Equations

An Introduction to Diophantine Equations PDF Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350

Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.

Number Theory

Number Theory PDF Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817646450
Category : Mathematics
Languages : en
Pages : 383

Book Description
This introductory textbook takes a problem-solving approach to number theory, situating each concept within the framework of an example or a problem for solving. Starting with the essentials, the text covers divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Included are sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems. By emphasizing examples and applications the authors motivate and engage readers.

Unit Equations in Diophantine Number Theory

Unit Equations in Diophantine Number Theory PDF Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
ISBN: 1316432351
Category : Mathematics
Languages : en
Pages : 381

Book Description
Diophantine number theory is an active area that has seen tremendous growth over the past century, and in this theory unit equations play a central role. This comprehensive treatment is the first volume devoted to these equations. The authors gather together all the most important results and look at many different aspects, including effective results on unit equations over number fields, estimates on the number of solutions, analogues for function fields and effective results for unit equations over finitely generated domains. They also present a variety of applications. Introductory chapters provide the necessary background in algebraic number theory and function field theory, as well as an account of the required tools from Diophantine approximation and transcendence theory. This makes the book suitable for young researchers as well as experts who are looking for an up-to-date overview of the field.

Arithmetic Geometry, Number Theory, and Computation

Arithmetic Geometry, Number Theory, and Computation PDF Author: Jennifer S. Balakrishnan
Publisher: Springer Nature
ISBN: 3030809145
Category : Mathematics
Languages : en
Pages : 587

Book Description
This volume contains articles related to the work of the Simons Collaboration “Arithmetic Geometry, Number Theory, and Computation.” The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research. Specific topics include● algebraic varieties over finite fields● the Chabauty-Coleman method● modular forms● rational points on curves of small genus● S-unit equations and integral points.

Algebraic Number Theory and Fermat's Last Theorem

Algebraic Number Theory and Fermat's Last Theorem PDF Author: Ian Stewart
Publisher: CRC Press
ISBN: 143986408X
Category : Mathematics
Languages : en
Pages : 334

Book Description
First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it

Number Theory

Number Theory PDF Author: Kalman Gyoery
Publisher: Walter de Gruyter
ISBN: 3110809796
Category : Mathematics
Languages : en
Pages : 617

Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Discrete Mathematics

Discrete Mathematics PDF Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342

Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.

Number Theory

Number Theory PDF Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 0387499237
Category : Mathematics
Languages : en
Pages : 673

Book Description
The central theme of this book is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three of its most basic aspects. The book contains more than 350 exercises and the text is largely self-contained. Much more sophisticated techniques have been brought to bear on the subject of Diophantine equations, and for this reason, the author has included five appendices on these techniques.

Discriminant Equations in Diophantine Number Theory

Discriminant Equations in Diophantine Number Theory PDF Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
ISBN: 1107097614
Category : Mathematics
Languages : en
Pages : 477

Book Description
The first comprehensive and up-to-date account of discriminant equations and their applications. For graduate students and researchers.