Quantum Error Correction PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum Error Correction PDF full book. Access full book title Quantum Error Correction by Daniel A. Lidar. Download full books in PDF and EPUB format.

Quantum Error Correction

Quantum Error Correction PDF Author: Daniel A. Lidar
Publisher: Cambridge University Press
ISBN: 0521897874
Category : Computers
Languages : en
Pages : 689

Book Description
Focusing on methods for quantum error correction, this book is invaluable for graduate students and experts in quantum information science.

Quantum Error Correction

Quantum Error Correction PDF Author: Daniel A. Lidar
Publisher: Cambridge University Press
ISBN: 0521897874
Category : Computers
Languages : en
Pages : 689

Book Description
Focusing on methods for quantum error correction, this book is invaluable for graduate students and experts in quantum information science.

Novel Methods in Quantum Error Correction

Novel Methods in Quantum Error Correction PDF Author: Tomas Jochym-O'Connor
Publisher:
ISBN:
Category : Error-correcting codes (Information theory)
Languages : en
Pages : 220

Book Description
Quantum error correction is the backbone of fault-tolerant quantum computation, a necessary requirement for any large scale quantum computer. The fault-tolerance threshold theorem has long been a target for experimental precision, allowing for the possibility of reducing logical error rates to arbitrarily low levels without excessive overhead. While there are many promising fault-tolerant architectures, the path towards the most practical fault-tolerant scheme is far from decided and may vary for differing physical models. This thesis proposes new schemes for universal fault-tolerant quantum computation in both the concatenated and topological code settings. Through the concatenation of two different error correcting codes, a set of universal fault-tolerant gates can be obtained without requiring the need for magic state distillation. A lower bound of $1.28 \times 10^{-3}$ for the fault-tolerance threshold under circuit level depolarizing noise is obtained. Additionally, stacked codes are proposed as a means to simulate the action of a 3D topological code in 2D, allowing for the application of a universal set of transversal operations. While fault-tolerant, unfortunately the scheme does not exhibit a threshold due to the decreasing pseudo-threshold with growing code distance, yet points to potential interesting avenues for fault-tolerant computation in 2D without distillation. One of the primary avenues to constructing fault-tolerant logical operations is through transversal operations. In this thesis, the set of single qubit logical gates that can be implemented transversally are characterized and determined to all belong to the Clifford hierarchy. Moreover, any diagonal two-qubit operation that can be applied transversally must belong to the same level of the Clifford hierarchy as the set of gates that can be implemented in the single-qubit case. The opposite to quantum error correction is privacy, where the output of a channel is disguised from its input. The two are fundamentally related through the complementary channel construction. This thesis presents a new class of private quantum channels, expanding the existing class beyond a seemingly fundamental restriction. This yields interesting insights into the structure of quantum information and the leaking of information to external environments. Additionally, the duality is only recovered when extending the complementary channel to sufficiently high environmental dimension. Finally, the error properties of bucket brigade quantum Random Access Memory (qRAM) are assessed. It is determined that using the bucket brigade qRAM architecture for the running of Grover's algorithm necessitates reducing the error rate of the individual components to exponentially small levels for an exponential sized memory. As such, fault-tolerant architectures will likely play an essential role in the construction of such computing primitives.

Quantum Error Correction and Fault Tolerant Quantum Computing

Quantum Error Correction and Fault Tolerant Quantum Computing PDF Author: Frank Gaitan
Publisher: CRC Press
ISBN: 0849371996
Category : Computers
Languages : en
Pages : 312

Book Description
It was once widely believed that quantum computation would never become a reality. However, the discovery of quantum error correction and the proof of the accuracy threshold theorem nearly ten years ago gave rise to extensive development and research aimed at creating a working, scalable quantum computer. Over a decade has passed since this monumental accomplishment yet no book-length pedagogical presentation of this important theory exists. Quantum Error Correction and Fault Tolerant Quantum Computing offers the first full-length exposition on the realization of a theory once thought impossible. It provides in-depth coverage on the most important class of codes discovered to date—quantum stabilizer codes. It brings together the central themes of quantum error correction and fault-tolerant procedures to prove the accuracy threshold theorem for a particular noise error model. The author also includes a derivation of well-known bounds on the parameters of quantum error correcting code. Packed with over 40 real-world problems, 35 field exercises, and 17 worked-out examples, this book is the essential resource for any researcher interested in entering the quantum field as well as for those who want to understand how the unexpected realization of quantum computing is possible.

Quantum Error Correction and Fault Tolerant Quantum Computing

Quantum Error Correction and Fault Tolerant Quantum Computing PDF Author: Frank Gaitan
Publisher:
ISBN:
Category : Error-correcting codes (Information theory)
Languages : en
Pages : 0

Book Description
It was once widely believed that quantum computation would never become a reality. However, the discovery of quantum error correction and the proof of the accuracy threshold theorem nearly ten years ago gave rise to extensive development and research aimed at creating a working, scalable quantum computer. Over a decade has passed since this monumental accomplishment yet no book-length pedagogical presentation of this important theory exists. Quantum Error Correction and Fault Tolerant Quantum Computing offers the first full-length exposition on the realization of a theory once thought impossible. It provides in-depth coverage on the most important class of codes discovered to date-quantum stabilizer codes. It brings together the central themes of quantum error correction and fault-tolerant procedures to prove the accuracy threshold theorem for a particular noise error model. The author also includes a derivation of well-known bounds on the parameters of quantum error correcting code. Packed with over 40 real-world problems, 35 field exercises, and 17 worked-out examples, this book is the essential resource for any researcher interested in entering the quantum field as well as for those who want to understand how the unexpected realization of quantum computing is possible.

Quantum Error Correction

Quantum Error Correction PDF Author: Giuliano Gadioli La Guardia
Publisher: Springer Nature
ISBN: 303048551X
Category : Computers
Languages : en
Pages : 234

Book Description
This text presents an algebraic approach to the construction of several important families of quantum codes derived from classical codes by applying the well-known Calderbank-Shor-Steane (CSS), Hermitian, and Steane enlargement constructions to certain classes of classical codes. In addition, the book presents families of asymmetric quantum codes with good parameters and provides a detailed description of the procedures adopted to construct families of asymmetric quantum convolutional codes. Featuring accessible language and clear explanations, the book is suitable for use in advanced undergraduate and graduate courses as well as for self-guided study and reference. It provides an expert introduction to algebraic techniques of code construction and, because all of the constructions are performed algebraically, it enables the reader to construct families of codes, rather than only codes with specific parameters. The text offers an abundance of worked examples, exercises, and open-ended problems to motivate the reader to further investigate this rich area of inquiry. End-of-chapter summaries and a glossary of key terms allow for easy review and reference.

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction PDF Author: Ivan Djordjevic
Publisher: Academic Press
ISBN: 0123854911
Category : Computers
Languages : en
Pages : 597

Book Description
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

New Methods in Quantum Error Correction and Fault-tolerant Quantum Computing

New Methods in Quantum Error Correction and Fault-tolerant Quantum Computing PDF Author: Christopher Chamberland
Publisher:
ISBN:
Category : Quantum computing
Languages : en
Pages : 190

Book Description
Quantum computers have the potential to solve several interesting problems in polynomial time for which no polynomial time classical algorithms have been found. However, one of the major challenges in building quantum devices is that quantum systems are very sensitive to noise arising from undesired interactions with the environment. Noise can lead to errors which can corrupt the results of the computation. Quantum error correction is one way to mitigate the effects of noise arising in quantum devices. With a plethora of quantum error correcting codes that can be used in various settings, one of the main challenges of quantum error correction is understanding how well various codes perform under more realistic noise models that can be observed in experiments. This thesis proposes a new decoding algorithm which can optimize threshold values of error correcting codes under different noise models. The algorithm can be applied to any Markovian noise model. Further, it is shown that for certain noise models, logical Clifford corrections can further improve a code's threshold value if the code obeys certain symmetries. Since gates and measurements cannot in general be performed with perfect precision, the operations required to perform quantum error correction can introduce more errors into the system thus negating the benefits of error correction. Fault-tolerant quantum computing is a way to perform quantum error correction with imperfect operations while retaining the ability to suppress errors as long as the noise is below a code's threshold. One of the main challenges in performing fault-tolerant error correction is the high resource requirements that are needed to obtain very low logical noise rates. With the use of flag qubits, this thesis develops new fault-tolerant error correction protocols that are applicable to arbitrary distance codes. Various code families are shown to satisfy the requirements of flag fault-tolerant error correction. We also provide circuits using a constant number of qubits for these codes. It is shown that the proposed flag fault-tolerant method uses fewer qubits than previous fault-tolerant error correction protocols. It is often the case that the noise afflicting a quantum device cannot be fully characterized. Further, even with some knowledge of the noise, it can be very challenging to use analytic decoding methods to improve the performance of a fault-tolerant scheme. This thesis presents decoding schemes using several state of the art machine learning techniques with a focus on fault-tolerant quantum error correction in regimes that are relevant to near term experiments. It is shown that even in low noise rate regimes and with no knowledge of the noise, noise can be further suppressed for small distance codes. Limitations of machine learning decoders as well as the classical resources required to perform active error correction are discussed. In many cases, gate times can be much shorter than typical measurement times of quantum states. Further, classical decoding of the syndrome information used in quantum error correction to compute recovery operators can also be much slower than gate times. For these reasons, schemes where error correction can be implemented in a frame (known as the Pauli frame) have been developed to avoid active error correction. In this thesis, we generalize previous Pauli frame schemes and show how Clifford frame error correction can be implemented with minimal overhead. Clifford frame error correction is necessary if the logical component of recovery operators were chosen from the Clifford group, but could also be used in randomized benchmarking schemes.

Quantum Communication, Computing, and Measurement

Quantum Communication, Computing, and Measurement PDF Author: Osamu Hirota
Publisher: Springer Science & Business Media
ISBN: 1461559235
Category : Mathematics
Languages : en
Pages : 521

Book Description
This volume contains the proceedings of the Third International Conference on Quantum Communication and Measurement. The series of international conferences on quantum communication and measurement was established to encourage scientists working in the interdisciplinary research fields of quantum communication science and technology. The first such conference, organized by C. Benjaballah and O. Hirota under the title "Quantum Aspects of Optical Communication," assembled approximately 80 researchers in Paris in 1990. The second conference, held in Nottingham in 1994, was organized by V. P. Belavkin, R. L. Hudson, and O. Hirota and attracted about 130 participants from 22 countries. The present conference, organized by O. Hirota, A. S. Holevo, C. M. Caves, H. P. Yuen, and L. Accardi, was heldSeptember 25-30, 1996, in Fuji-Hakone Land, Japan, andjnvolved about 120 researchers from 15 countries. The topics at this third conference included the foundations of quantum communi cation and information theory, quantum measurement theory, quantum cryptography and quantum computation, quantum devices and high-precision measurements, gener ation of nonclassical light, and atom optics. Special emphasis was placed on bringing together research workers in experimental and engineering fields of quantum commu nication and quantum computing and theoreticians working in quantum measurement and information theory. Nineteen plenary and parallel sessions and one poster ses sion were organized, at which a total of 82 papers were presented. Interesting and stimulating scientific discussions took place between and after sessions as well as in the evenings.

Non-Gaussian Methods for Quantum Error Correction

Non-Gaussian Methods for Quantum Error Correction PDF Author: Dominik Hörndlein
Publisher:
ISBN:
Category :
Languages : en
Pages : 85

Book Description


Protecting Information

Protecting Information PDF Author: Susan Loepp
Publisher: Cambridge University Press
ISBN: 1139457667
Category : Computers
Languages : en
Pages : 269

Book Description
For many everyday transmissions, it is essential to protect digital information from noise or eavesdropping. This undergraduate introduction to error correction and cryptography is unique in devoting several chapters to quantum cryptography and quantum computing, thus providing a context in which ideas from mathematics and physics meet. By covering such topics as Shor's quantum factoring algorithm, this text informs the reader about current thinking in quantum information theory and encourages an appreciation of the connections between mathematics and science.Of particular interest are the potential impacts of quantum physics:(i) a quantum computer, if built, could crack our currently used public-key cryptosystems; and (ii) quantum cryptography promises to provide an alternative to these cryptosystems, basing its security on the laws of nature rather than on computational complexity. No prior knowledge of quantum mechanics is assumed, but students should have a basic knowledge of complex numbers, vectors, and matrices.