Author: Claudia Felser
Publisher: Springer
ISBN: 3319214497
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This book gives an overview of the physics of Heusler compounds ranging from fundamental properties of these alloys to their applications. Especially Heusler compounds as half-metallic ferromagnetic and topological insulators are important in condensed matter science due to their potential in magnetism and as materials for energy conversion. The book is written by world-leaders in this field. It offers an ideal reference to researchers at any level.
Heusler Alloys
Author: Claudia Felser
Publisher: Springer
ISBN: 3319214497
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This book gives an overview of the physics of Heusler compounds ranging from fundamental properties of these alloys to their applications. Especially Heusler compounds as half-metallic ferromagnetic and topological insulators are important in condensed matter science due to their potential in magnetism and as materials for energy conversion. The book is written by world-leaders in this field. It offers an ideal reference to researchers at any level.
Publisher: Springer
ISBN: 3319214497
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This book gives an overview of the physics of Heusler compounds ranging from fundamental properties of these alloys to their applications. Especially Heusler compounds as half-metallic ferromagnetic and topological insulators are important in condensed matter science due to their potential in magnetism and as materials for energy conversion. The book is written by world-leaders in this field. It offers an ideal reference to researchers at any level.
Handbook of Spintronics
Author: Yongbing Xu
Publisher: Springer
ISBN: 9789400768918
Category : Science
Languages : en
Pages : 0
Book Description
Over two volumes and 1500 pages, the Handbook of Spintronics will cover all aspects of spintronics science and technology, including fundamental physics, materials properties and processing, established and emerging device technology and applications. Comprising 60 chapters from a large international team of leading researchers across academia and industry, the Handbook provides readers with an up-to-date and comprehensive review of this dynamic field of research. The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including an introduction to spin quantum computing. Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrids, magnetic semiconductors and molecular spintronic materials. A separate section reviews the various characterisation methods appropriate to spintronics materials, including STM, spin-polarised photoemission, x-ray diffraction techniques and spin-polarised SEM. The third part of the Handbook contains chapters on the state of the art in device technology and applications, including spin valves, GMR and MTJ devices, MRAM technology, spin transistors and spin logic devices, spin torque devices, spin pumping and spin dynamics and other topics such as spin caloritronics. Each chapter considers the challenges faced by researchers in that area and contains some indications of the direction that future work in the field is likely to take. This reference work will be an essential and long-standing resource for the spintronics community.
Publisher: Springer
ISBN: 9789400768918
Category : Science
Languages : en
Pages : 0
Book Description
Over two volumes and 1500 pages, the Handbook of Spintronics will cover all aspects of spintronics science and technology, including fundamental physics, materials properties and processing, established and emerging device technology and applications. Comprising 60 chapters from a large international team of leading researchers across academia and industry, the Handbook provides readers with an up-to-date and comprehensive review of this dynamic field of research. The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including an introduction to spin quantum computing. Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrids, magnetic semiconductors and molecular spintronic materials. A separate section reviews the various characterisation methods appropriate to spintronics materials, including STM, spin-polarised photoemission, x-ray diffraction techniques and spin-polarised SEM. The third part of the Handbook contains chapters on the state of the art in device technology and applications, including spin valves, GMR and MTJ devices, MRAM technology, spin transistors and spin logic devices, spin torque devices, spin pumping and spin dynamics and other topics such as spin caloritronics. Each chapter considers the challenges faced by researchers in that area and contains some indications of the direction that future work in the field is likely to take. This reference work will be an essential and long-standing resource for the spintronics community.
Planewaves, Pseudopotentials and the LAPW Method
Author: David J. Singh
Publisher: Springer Science & Business Media
ISBN: 1475723121
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
Over the past decade the world's technological and industrial base has become increasingly dependent on advanced materials. There is every indication that this trend will accelerate and that progress in many areas will increasingly depend on the development of new materials and processing techniques. A second and equally significant trend is the continuing ascent of the information technologies, which now touch almost every aspect of life in some way. In this environment it is natural that there is a strong interest in using numerical modeling in materials science. With its extreme accuracy and reasonable computational efficiency, the linearized augmented plane wave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. Planewaves, Pseudopotentials and the LAPW Method presents a thorough and self-contained exposition of the LAPW method, making this powerful technique more accessible to researchers and students who have some familiarity with local density approximation calculations. Theory is discussed, but the emphasis is on how practical implementation proceeds. In addition, the author suggests future directions for adapting the LAPW method to simulations of complex materials requiring large unit cells. He does this by elucidating the connections between the LAPW method and planewave pseudopotential approaches and by showing how Car--Parrinello type algorithms can be adapted to the LAPW method. Planewaves, Pseudopotentials and the LAPW Method is a valuable resource for researchers already involved in electronic structure calculations, as well as for newcomers seeking quick mastery of the LAPW technique.
Publisher: Springer Science & Business Media
ISBN: 1475723121
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
Over the past decade the world's technological and industrial base has become increasingly dependent on advanced materials. There is every indication that this trend will accelerate and that progress in many areas will increasingly depend on the development of new materials and processing techniques. A second and equally significant trend is the continuing ascent of the information technologies, which now touch almost every aspect of life in some way. In this environment it is natural that there is a strong interest in using numerical modeling in materials science. With its extreme accuracy and reasonable computational efficiency, the linearized augmented plane wave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. Planewaves, Pseudopotentials and the LAPW Method presents a thorough and self-contained exposition of the LAPW method, making this powerful technique more accessible to researchers and students who have some familiarity with local density approximation calculations. Theory is discussed, but the emphasis is on how practical implementation proceeds. In addition, the author suggests future directions for adapting the LAPW method to simulations of complex materials requiring large unit cells. He does this by elucidating the connections between the LAPW method and planewave pseudopotential approaches and by showing how Car--Parrinello type algorithms can be adapted to the LAPW method. Planewaves, Pseudopotentials and the LAPW Method is a valuable resource for researchers already involved in electronic structure calculations, as well as for newcomers seeking quick mastery of the LAPW technique.
Alloys and Compounds of d-Elements with Main Group Elements
Author:
Publisher: Springer
ISBN: 9783540632788
Category : Science
Languages : en
Pages : 415
Book Description
Volume 32 of Group III is a supplement to volume III/19 and deals with the magnetic properties of metals, alloys and metallic compounds which contain at least one transition element. The present subvolume III/32C provides comprehensive and evaluated data on magnetic properties of alloys and compounds of d-elements with main group elements published mainly in the previous decade.
Publisher: Springer
ISBN: 9783540632788
Category : Science
Languages : en
Pages : 415
Book Description
Volume 32 of Group III is a supplement to volume III/19 and deals with the magnetic properties of metals, alloys and metallic compounds which contain at least one transition element. The present subvolume III/32C provides comprehensive and evaluated data on magnetic properties of alloys and compounds of d-elements with main group elements published mainly in the previous decade.
Oxide Electronics
Author: Asim K. Ray
Publisher: John Wiley & Sons
ISBN: 1119529476
Category : Technology & Engineering
Languages : en
Pages : 628
Book Description
Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.
Publisher: John Wiley & Sons
ISBN: 1119529476
Category : Technology & Engineering
Languages : en
Pages : 628
Book Description
Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.
Spin Current
Author: Sadamichi Maekawa
Publisher: Oxford University Press
ISBN: 0198787073
Category : Science
Languages : en
Pages : 541
Book Description
In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.
Publisher: Oxford University Press
ISBN: 0198787073
Category : Science
Languages : en
Pages : 541
Book Description
In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.
Introduction to Magnetism and Magnetic Materials
Author: David Jiles
Publisher: CRC Press
ISBN: 148223890X
Category : Science
Languages : en
Pages : 512
Book Description
A long overdue update, this edition of Introduction to Magnetism and Magnetic Materials is a complete revision of its predecessor. While it provides relatively minor updates to the first two sections, the third section contains vast updates to reflect the enormous progress made in applications in the past 15 years, particularly in magnetic recordin
Publisher: CRC Press
ISBN: 148223890X
Category : Science
Languages : en
Pages : 512
Book Description
A long overdue update, this edition of Introduction to Magnetism and Magnetic Materials is a complete revision of its predecessor. While it provides relatively minor updates to the first two sections, the third section contains vast updates to reflect the enormous progress made in applications in the past 15 years, particularly in magnetic recordin
Advanced Magnetic Materials
Author: Leszek Malkinski
Publisher: BoD – Books on Demand
ISBN: 9535106376
Category : Science
Languages : en
Pages : 246
Book Description
This book reports on recent progress in emerging technologies, modern characterization methods, theory and applications of advanced magnetic materials. It covers broad spectrum of topics: technology and characterization of rapidly quenched nanowires for information technology; fabrication and properties of hexagonal ferrite films for microwave communication; surface reconstruction of magnetite for spintronics; synthesis of multiferroic composites for novel biomedical applications, optimization of electroplated inductors for microelectronic devices; theory of magnetism of Fe-Al alloys; and two advanced analytical approaches for modeling of magnetic materials using Everett integral and the inverse problem approach. This book is addressed to a diverse group of readers with general background in physics or materials science, but it can also benefit specialists in the field of magnetic materials.
Publisher: BoD – Books on Demand
ISBN: 9535106376
Category : Science
Languages : en
Pages : 246
Book Description
This book reports on recent progress in emerging technologies, modern characterization methods, theory and applications of advanced magnetic materials. It covers broad spectrum of topics: technology and characterization of rapidly quenched nanowires for information technology; fabrication and properties of hexagonal ferrite films for microwave communication; surface reconstruction of magnetite for spintronics; synthesis of multiferroic composites for novel biomedical applications, optimization of electroplated inductors for microelectronic devices; theory of magnetism of Fe-Al alloys; and two advanced analytical approaches for modeling of magnetic materials using Everett integral and the inverse problem approach. This book is addressed to a diverse group of readers with general background in physics or materials science, but it can also benefit specialists in the field of magnetic materials.
Semiconductor Spintronics and Quantum Computation
Author: D.D. Awschalom
Publisher: Springer Science & Business Media
ISBN: 366205003X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
The past few decades of research and development in solid-state semicon ductor physics and electronics have witnessed a rapid growth in the drive to exploit quantum mechanics in the design and function of semiconductor devices. This has been fueled for instance by the remarkable advances in our ability to fabricate nanostructures such as quantum wells, quantum wires and quantum dots. Despite this contemporary focus on semiconductor "quantum devices," a principal quantum mechanical aspect of the electron - its spin has it accounts for an added quan largely been ignored (except in as much as tum mechanical degeneracy). In recent years, however, a new paradigm of electronics based on the spin degree of freedom of the electron has begun to emerge. This field of semiconductor "spintronics" (spin transport electron ics or spin-based electronics) places electron spin rather than charge at the very center of interest. The underlying basis for this new electronics is the intimate connection between the charge and spin degrees of freedom of the electron via the Pauli principle. A crucial implication of this relationship is that spin effects can often be accessed through the orbital properties of the electron in the solid state. Examples for this are optical measurements of the spin state based on the Faraday effect and spin-dependent transport measure ments such as giant magneto-resistance (GMR). In this manner, information can be encoded in not only the electron's charge but also in its spin state, i. e.
Publisher: Springer Science & Business Media
ISBN: 366205003X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
The past few decades of research and development in solid-state semicon ductor physics and electronics have witnessed a rapid growth in the drive to exploit quantum mechanics in the design and function of semiconductor devices. This has been fueled for instance by the remarkable advances in our ability to fabricate nanostructures such as quantum wells, quantum wires and quantum dots. Despite this contemporary focus on semiconductor "quantum devices," a principal quantum mechanical aspect of the electron - its spin has it accounts for an added quan largely been ignored (except in as much as tum mechanical degeneracy). In recent years, however, a new paradigm of electronics based on the spin degree of freedom of the electron has begun to emerge. This field of semiconductor "spintronics" (spin transport electron ics or spin-based electronics) places electron spin rather than charge at the very center of interest. The underlying basis for this new electronics is the intimate connection between the charge and spin degrees of freedom of the electron via the Pauli principle. A crucial implication of this relationship is that spin effects can often be accessed through the orbital properties of the electron in the solid state. Examples for this are optical measurements of the spin state based on the Faraday effect and spin-dependent transport measure ments such as giant magneto-resistance (GMR). In this manner, information can be encoded in not only the electron's charge but also in its spin state, i. e.
Magnetic Multilayers
Author: Lawrence H Bennett
Publisher: World Scientific
ISBN: 9814571067
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
This book focuses on an increasingly important area of materials science and technology, namely, the fabrication and properties of artificial materials where slabs of magnetized materials are sandwiched between slabs of nonmagnetized materials. It includes reviews by experts on the theory and descriptions of the various experimental techniques such as those using nuclear or electron spin probes, as well as optical, X-ray or neutron probes. It also reviews potential applications such as the giant magnetoresistance, and one specialized preparation technique, the electrodeposition. The various chapters are tutorial in nature, making the subject accessible to nonspecialists, as well as useful to researchers in the field.
Publisher: World Scientific
ISBN: 9814571067
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
This book focuses on an increasingly important area of materials science and technology, namely, the fabrication and properties of artificial materials where slabs of magnetized materials are sandwiched between slabs of nonmagnetized materials. It includes reviews by experts on the theory and descriptions of the various experimental techniques such as those using nuclear or electron spin probes, as well as optical, X-ray or neutron probes. It also reviews potential applications such as the giant magnetoresistance, and one specialized preparation technique, the electrodeposition. The various chapters are tutorial in nature, making the subject accessible to nonspecialists, as well as useful to researchers in the field.