Nonstandard Analysis in Practice PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nonstandard Analysis in Practice PDF full book. Access full book title Nonstandard Analysis in Practice by Francine Diener. Download full books in PDF and EPUB format.

Nonstandard Analysis in Practice

Nonstandard Analysis in Practice PDF Author: Francine Diener
Publisher: Springer Science & Business Media
ISBN: 364257758X
Category : Mathematics
Languages : en
Pages : 262

Book Description
This book introduces the graduate mathematician and researcher to the effective use of nonstandard analysis (NSA). It provides a tutorial introduction to this modern theory of infinitesimals, followed by nine examples of applications, including complex analysis, stochastic differential equations, differential geometry, topology, probability, integration, and asymptotics. It ends with remarks on teaching with infinitesimals.

Nonstandard Analysis in Practice

Nonstandard Analysis in Practice PDF Author: Francine Diener
Publisher: Springer Science & Business Media
ISBN: 364257758X
Category : Mathematics
Languages : en
Pages : 262

Book Description
This book introduces the graduate mathematician and researcher to the effective use of nonstandard analysis (NSA). It provides a tutorial introduction to this modern theory of infinitesimals, followed by nine examples of applications, including complex analysis, stochastic differential equations, differential geometry, topology, probability, integration, and asymptotics. It ends with remarks on teaching with infinitesimals.

Lectures on the Hyperreals

Lectures on the Hyperreals PDF Author: Robert Goldblatt
Publisher: Springer Science & Business Media
ISBN: 1461206154
Category : Mathematics
Languages : en
Pages : 292

Book Description
An introduction to nonstandard analysis based on a course given by the author. It is suitable for beginning graduates or upper undergraduates, or for self-study by anyone familiar with elementary real analysis. It presents nonstandard analysis not just as a theory about infinitely small and large numbers, but as a radically different way of viewing many standard mathematical concepts and constructions. It is a source of new ideas, objects and proofs, and a wealth of powerful new principles of reasoning. The book begins with the ultrapower construction of hyperreal number systems, and proceeds to develop one-variable calculus, analysis and topology from the nonstandard perspective. It then sets out the theory of enlargements of fragments of the mathematical universe, providing a foundation for the full-scale development of the nonstandard methodology. The final chapters apply this to a number of topics, including Loeb measure theory and its relation to Lebesgue measure on the real line. Highlights include an early introduction of the ideas of internal, external and hyperfinite sets, and a more axiomatic set-theoretic approach to enlargements than is usual.

Non-standard Analysis

Non-standard Analysis PDF Author: Abraham Robinson
Publisher: Princeton University Press
ISBN: 1400884225
Category : Mathematics
Languages : en
Pages : 315

Book Description
Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested in non-standard analysis. It treats in rich detail many areas of application, including topology, functions of a real variable, functions of a complex variable, and normed linear spaces, together with problems of boundary layer flow of viscous fluids and rederivations of Saint-Venant's hypothesis concerning the distribution of stresses in an elastic body.

Nonstandard Analysis

Nonstandard Analysis PDF Author: Martin Väth
Publisher: Springer Science & Business Media
ISBN: 3764377739
Category : Mathematics
Languages : en
Pages : 255

Book Description
This book introduces Robinson's nonstandard analysis, an application of model theory in analysis. Unlike some texts, it does not attempt to teach elementary calculus on the basis of nonstandard analysis, but points to some applications in more advanced analysis. The contents proceed from a discussion of the preliminaries to Nonstandard Models; Nonstandard Real Analysis; Enlargements and Saturated Models; Functionals, Generalized Limits, and Additive Measures; and finally Nonstandard Topology and Functional Analysis. No background in model theory is required, although some familiarity with analysis, topology, or functional analysis is useful. This self-contained book can be understood after a basic calculus course.

Elementary Calculus

Elementary Calculus PDF Author: H. Jerome Keisler
Publisher: Orange Groove Books
ISBN: 9781616100315
Category : Mathematics
Languages : en
Pages : 992

Book Description


Nonstandard Analysis, Axiomatically

Nonstandard Analysis, Axiomatically PDF Author: Vladimir Kanovei
Publisher: Springer Science & Business Media
ISBN: 366208998X
Category : Mathematics
Languages : en
Pages : 421

Book Description
In the aftermath of the discoveries in foundations of mathematiC's there was surprisingly little effect on mathematics as a whole. If one looks at stan dard textbooks in different mathematical disciplines, especially those closer to what is referred to as applied mathematics, there is little trace of those developments outside of mathematical logic and model theory. But it seems fair to say that there is a widespread conviction that the principles embodied in the Zermelo - Fraenkel theory with Choice (ZFC) are a correct description of the set theoretic underpinnings of mathematics. In most textbooks of the kind referred to above, there is, of course, no discussion of these matters, and set theory is assumed informally, although more advanced principles like Choice or sometimes Replacement are often mentioned explicitly. This implicitly fixes a point of view of the mathemat ical universe which is at odds with the results in foundations. For example most mathematicians still take it for granted that the real number system is uniquely determined up to isomorphism, which is a correct point of view as long as one does not accept to look at "unnatural" interpretations of the membership relation.

Nonstandard Analysis

Nonstandard Analysis PDF Author: Karl Kuhlemann
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111430537
Category : Mathematics
Languages : en
Pages : 293

Book Description
Currently, nonstandard analysis is barely considered in university teaching. The author argues that nonstandard analysis is valuable not only for teaching, but also for understanding standard analysis and mathematics itself. An axiomatic approach wich pays attention to different language levels (for example, in the distinction between sums of ones and the natural numbers of the theory) leads naturally to a nonstandard theory. For motivation historical ideas of Leibniz can be taken up. The book contains an elaborated concept that follows this approach and is suitable, for example, as a basis for a lecture-supplementary course. The monograph part presents all major approaches to nonstandard analysis and discusses logical, model-theoretic, and set-theoretic investigations to reveal possible mathematical reasons that may lead to reservations about nonstandard analysis. Also various foundational positions as well as ontological, epistemological, and application-related issues are addressed. It turns out that the one-sided preference for standard analysis is justified neither from a didactic, mathematical nor philosophical point of view. Thus, the book is especially valuable for students and instructors of analysis who are also interested in the foundations of their subject.

Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory

Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory PDF Author: Mauro Di Nasso
Publisher: Springer
ISBN: 3030179567
Category : Mathematics
Languages : en
Pages : 211

Book Description
The goal of this monograph is to give an accessible introduction to nonstandard methods and their applications, with an emphasis on combinatorics and Ramsey theory. It includes both new nonstandard proofs of classical results and recent developments initially obtained in the nonstandard setting. This makes it the first combinatorics-focused account of nonstandard methods to be aimed at a general (graduate-level) mathematical audience. This book will provide a natural starting point for researchers interested in approaching the rapidly growing literature on combinatorial results obtained via nonstandard methods. The primary audience consists of graduate students and specialists in logic and combinatorics who wish to pursue research at the interface between these areas.

Real Analysis Through Modern Infinitesimals

Real Analysis Through Modern Infinitesimals PDF Author: Nader Vakil
Publisher: Cambridge University Press
ISBN: 1107002028
Category : Mathematics
Languages : en
Pages : 587

Book Description
A coherent, self-contained treatment of the central topics of real analysis employing modern infinitesimals.

Analysis I

Analysis I PDF Author: Terence Tao
Publisher: Springer
ISBN: 9811017891
Category : Mathematics
Languages : en
Pages : 366

Book Description
This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.