The Statistical Analysis of Interval-censored Failure Time Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Statistical Analysis of Interval-censored Failure Time Data PDF full book. Access full book title The Statistical Analysis of Interval-censored Failure Time Data by Jianguo Sun. Download full books in PDF and EPUB format.

The Statistical Analysis of Interval-censored Failure Time Data

The Statistical Analysis of Interval-censored Failure Time Data PDF Author: Jianguo Sun
Publisher: Springer
ISBN: 0387371192
Category : Mathematics
Languages : en
Pages : 310

Book Description
This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.

The Statistical Analysis of Interval-censored Failure Time Data

The Statistical Analysis of Interval-censored Failure Time Data PDF Author: Jianguo Sun
Publisher: Springer
ISBN: 0387371192
Category : Mathematics
Languages : en
Pages : 310

Book Description
This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.

Survival Analysis with Interval-Censored Data

Survival Analysis with Interval-Censored Data PDF Author: Kris Bogaerts
Publisher: CRC Press
ISBN: 1351643053
Category : Mathematics
Languages : en
Pages : 537

Book Description
Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censoring is often ignored in practice. Many are unaware of the impact of inappropriately dealing with interval censoring. In addition, the necessary software is at times difficult to trace. This book fills in the gap between theory and practice. Features: -Provides an overview of frequentist as well as Bayesian methods. -Include a focus on practical aspects and applications. -Extensively illustrates the methods with examples using R, SAS, and BUGS. Full programs are available on a supplementary website. The authors: Kris Bogaerts is project manager at I-BioStat, KU Leuven. He received his PhD in science (statistics) at KU Leuven on the analysis of interval-censored data. He has gained expertise in a great variety of statistical topics with a focus on the design and analysis of clinical trials. Arnošt Komárek is associate professor of statistics at Charles University, Prague. His subject area of expertise covers mainly survival analysis with the emphasis on interval-censored data and classification based on longitudinal data. He is past chair of the Statistical Modelling Society and editor of Statistical Modelling: An International Journal. Emmanuel Lesaffre is professor of biostatistics at I-BioStat, KU Leuven. His research interests include Bayesian methods, longitudinal data analysis, statistical modelling, analysis of dental data, interval-censored data, misclassification issues, and clinical trials. He is the founding chair of the Statistical Modelling Society, past-president of the International Society for Clinical Biostatistics, and fellow of ISI and ASA.

Survival Analysis

Survival Analysis PDF Author: John P. Klein
Publisher: Springer Science & Business Media
ISBN: 1475727283
Category : Medical
Languages : en
Pages : 508

Book Description
Making complex methods more accessible to applied researchers without an advanced mathematical background, the authors present the essence of new techniques available, as well as classical techniques, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of practical notes at the end of each section, while technical details of the derivation of the techniques are sketched in the technical notes. This book will thus be useful for investigators who need to analyse censored or truncated life time data, and as a textbook for a graduate course in survival analysis, the only prerequisite being a standard course in statistical methodology.

Statistics for Censored Environmental Data Using Minitab and R

Statistics for Censored Environmental Data Using Minitab and R PDF Author: Dennis R. Helsel
Publisher: John Wiley & Sons
ISBN: 0470479884
Category : Mathematics
Languages : en
Pages : 344

Book Description
Praise for the First Edition " . . . an excellent addition to an upper-level undergraduate course on environmental statistics, and . . . a 'must-have' desk reference for environmental practitioners dealing with censored datasets." —Vadose Zone Journal Statistics for Censored Environmental Data Using Minitab® and R, Second Edition introduces and explains methods for analyzing and interpreting censored data in the environmental sciences. Adapting survival analysis techniques from other fields, the book translates well-established methods from other disciplines into new solutions for environmental studies. This new edition applies methods of survival analysis, including methods for interval-censored data to the interpretation of low-level contaminants in environmental sciences and occupational health. Now incorporating the freely available R software as well as Minitab® into the discussed analyses, the book features newly developed and updated material including: A new chapter on multivariate methods for censored data Use of interval-censored methods for treating true nondetects as lower than and separate from values between the detection and quantitation limits ("remarked data") A section on summing data with nondetects A newly written introduction that discusses invasive data, showing why substitution methods fail Expanded coverage of graphical methods for censored data The author writes in a style that focuses on applications rather than derivations, with chapters organized by key objectives such as computing intervals, comparing groups, and correlation. Examples accompany each procedure, utilizing real-world data that can be analyzed using the Minitab® and R software macros available on the book's related website, and extensive references direct readers to authoritative literature from the environmental sciences. Statistics for Censored Environmental Data Using Minitab® and R, Second Edition is an excellent book for courses on environmental statistics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for??environmental professionals, biologists, and ecologists who focus on the water sciences, air quality, and soil science.

Statistical Models and Methods for Biomedical and Technical Systems

Statistical Models and Methods for Biomedical and Technical Systems PDF Author: Filia Vonta
Publisher: Springer Science & Business Media
ISBN: 0817646191
Category : Medical
Languages : en
Pages : 556

Book Description
This book deals with the mathematical aspects of survival analysis and reliability as well as other topics, reflecting recent developments in the following areas: applications in epidemiology; probabilistic and statistical models and methods in reliability; models and methods in survival analysis, longevity, aging, and degradation; accelerated life models; quality of life; new statistical challenges in genomics. The work will be useful to a broad interdisciplinary readership of researchers and practitioners in applied probability and statistics, industrial statistics, biomedicine, biostatistics, and engineering.

Survival Analysis Using S

Survival Analysis Using S PDF Author: Mara Tableman
Publisher: CRC Press
ISBN: 0203501411
Category : Mathematics
Languages : en
Pages : 277

Book Description
Survival Analysis Using S: Analysis of Time-to-Event Data is designed as a text for a one-semester or one-quarter course in survival analysis for upper-level or graduate students in statistics, biostatistics, and epidemiology. Prerequisites are a standard pre-calculus first course in probability and statistics, and a course in applied linear regression models. No prior knowledge of S or R is assumed. A wide choice of exercises is included, some intended for more advanced students with a first course in mathematical statistics. The authors emphasize parametric log-linear models, while also detailing nonparametric procedures along with model building and data diagnostics. Medical and public health researchers will find the discussion of cut point analysis with bootstrap validation, competing risks and the cumulative incidence estimator, and the analysis of left-truncated and right-censored data invaluable. The bootstrap procedure checks robustness of cut point analysis and determines cut point(s). In a chapter written by Stephen Portnoy, censored regression quantiles - a new nonparametric regression methodology (2003) - is developed to identify important forms of population heterogeneity and to detect departures from traditional Cox models. By generalizing the Kaplan-Meier estimator to regression models for conditional quantiles, this methods provides a valuable complement to traditional Cox proportional hazards approaches.

Nondetects and Data Analysis

Nondetects and Data Analysis PDF Author: Dennis R. Helsel
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 276

Book Description
STATISTICS IN PRACTICE Statistical methods for interpreting and analyzing censored environmental data Nondetects And Data Analysis: Statistics for Censored Environmental Data provides solutions for environmental scientists and professionals who need to interpret and analyze data that fall below the laboratory detection limit. Adapting survival analysis methods that have been successfully used in medical and industrial research, the author demonstrates, for the first time, their practical applications for studies of trace chemicals in air, water, soils, and biota. Readers quickly become proficient in these methods through the use of real-world examples that are solved using MINITAB® Release 14, a popular statistical software package, as well as other commonly used software packages. Everything needed to master these innovative statistical methods is provided, including: Accompanying Web site featuring answers to book exercises and datasets, as well as MINITAB® macros to perform methods, which are not available in the commercial version Methods for data with multiple detection limits Solutions for research studies in which all data are below detection limits Techniques for constructing confidence, prediction, and tolerance intervals for data with nond-tects Methods for data with multiple detection limits Chapters are organized by objective, such as computing intervals, comparing groups, and correlations, which enables readers to more easily apply the text to their particular research and goals. Extensive references to the literature for more in-depth research are provided; however, the text itself avoids complex math and calculus making it accessible to anyone in the environmental sciences. Environmental scientists and professionals will find the hands-on guidance and practical examples invaluable.

Information Bounds and Nonparametric Maximum Likelihood Estimation

Information Bounds and Nonparametric Maximum Likelihood Estimation PDF Author: P. Groeneboom
Publisher: Springer Science & Business Media
ISBN: 9783764327941
Category : Mathematics
Languages : en
Pages : 140

Book Description
This book contains the lecture notes for a DMV course presented by the authors at Gunzburg, Germany, in September, 1990. In the course we sketched the theory of information bounds for non parametric and semiparametric models, and developed the theory of non parametric maximum likelihood estimation in several particular inverse problems: interval censoring and deconvolution models. Part I, based on Jon Wellner's lectures, gives a brief sketch of information lower bound theory: Hajek's convolution theorem and extensions, useful minimax bounds for parametric problems due to Ibragimov and Has'minskii, and a recent result characterizing differentiable functionals due to van der Vaart (1991). The differentiability theorem is illustrated with the examples of interval censoring and deconvolution (which are pursued from the estimation perspective in part II). The differentiability theorem gives a way of clearly distinguishing situations in which 1 2 the parameter of interest can be estimated at rate n / and situations in which this is not the case. However it says nothing about which rates to expect when the functional is not differentiable. Even the casual reader will notice that several models are introduced, but not pursued in any detail; many problems remain. Part II, based on Piet Groeneboom's lectures, focuses on non parametric maximum likelihood estimates (NPMLE's) for certain inverse problems. The first chapter deals with the interval censoring problem.

Nonparametric Estimation under Shape Constraints

Nonparametric Estimation under Shape Constraints PDF Author: Piet Groeneboom
Publisher: Cambridge University Press
ISBN: 1316194124
Category : Mathematics
Languages : en
Pages : 429

Book Description
This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Among the topics treated are current status and interval censoring models, competing risk models, and deconvolution. Methods of order restricted inference are used in computing maximum likelihood estimators and developing distribution theory for inverse problems of this type. The authors have been active in developing these tools and present the state of the art and the open problems in the field. The earlier chapters provide an introduction to the subject, while the later chapters are written with graduate students and researchers in mathematical statistics in mind. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature.

Statistical Methods in Water Resources

Statistical Methods in Water Resources PDF Author: D.R. Helsel
Publisher: Elsevier
ISBN: 0080875084
Category : Science
Languages : en
Pages : 539

Book Description
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.