Nonlinear Theory of Generalized Functions

Nonlinear Theory of Generalized Functions PDF Author: Michael Oberguggenberger
Publisher: Routledge
ISBN: 1351428039
Category : Mathematics
Languages : en
Pages : 400

Book Description
Questions regarding the interplay of nonlinearity and the creation and propagation of singularities arise in a variety of fields-including nonlinear partial differential equations, noise-driven stochastic partial differential equations, general relativity, and geometry with singularities. A workshop held at the Erwin-Schrödinger International Institute for Mathematical Physics in Vienna investigated these questions and culminated in this volume of invited papers from experts in the fields of nonlinear partial differential equations, structure theory of generalized functions, geometry and general relativity, stochastic partial differential equations, and nonstandard analysis. The authors provide the latest research relevant to work in partial differential equations, mathematical physics, and nonlinear analysis. With a focus on applications, this books provides a compilation of recent approaches to the problem of singularities in nonlinear models. The theory of differential algebras of generalized functions serves as the central theme of the project, along with its interrelations with classical methods.

Generalized Functions Theory and Technique

Generalized Functions Theory and Technique PDF Author: Ram P. Kanwal
Publisher: Springer Science & Business Media
ISBN: 1468400355
Category : Mathematics
Languages : en
Pages : 474

Book Description
This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.

Geometric Theory of Generalized Functions with Applications to General Relativity

Geometric Theory of Generalized Functions with Applications to General Relativity PDF Author: Michael Grosser
Publisher: Springer Science & Business Media
ISBN: 9781402001451
Category : Mathematics
Languages : en
Pages : 556

Book Description
This work provides the first comprehensive introduction to the nonlinear theory of generalized functions (in the sense of Colombeau's construction) on differentiable manifolds. Particular emphasis is laid on a diffeomorphism invariant geometric approach to embedding the space of Schwartz distributions into algebras of generalized functions. The foundations of a `nonlinear distributional geometry' are developed, supplying a solid base for an increasing number of applications of algebras of generalized functions to questions of a primarily geometric mature, in particular in mathematical physics. Applications of the resulting theory to symmetry group analysis of differential equations and the theory of general relativity are presented in separate chapters. These features distinguish the present volume from earlier introductory texts and monographs on the subject. Audience: The book will be of interest to graduate students as well as to researchers in functional analysis, partial differential equations, differential geometry, and mathematical physics.

Nonlinear Theory of Generalized Functions

Nonlinear Theory of Generalized Functions PDF Author: Michael Oberguggenberger
Publisher: CRC Press
ISBN: 9780849306495
Category : Mathematics
Languages : en
Pages : 396

Book Description
Questions regarding the interplay of nonlinearity and the creation and propagation of singularities arise in a variety of fields-including nonlinear partial differential equations, noise-driven stochastic partial differential equations, general relativity, and geometry with singularities. A workshop held at the Erwin-Schrödinger International Institute for Mathematical Physics in Vienna investigated these questions and culminated in this volume of invited papers from experts in the fields of nonlinear partial differential equations, structure theory of generalized functions, geometry and general relativity, stochastic partial differential equations, and nonstandard analysis. The authors provide the latest research relevant to work in partial differential equations, mathematical physics, and nonlinear analysis. With a focus on applications, this books provides a compilation of recent approaches to the problem of singularities in nonlinear models. The theory of differential algebras of generalized functions serves as the central theme of the project, along with its interrelations with classical methods.

Multiplication of Distributions

Multiplication of Distributions PDF Author: Jean F. Colombeau
Publisher: Springer
ISBN: 3540475109
Category : Mathematics
Languages : en
Pages : 193

Book Description
This book presents recent and very elementary developments of a theory of multiplication of distributions in the field of explicit and numerical solutions of systems of PDEs of physics (nonlinear elasticity, elastoplasticity, hydrodynamics, multifluid flows, acoustics). The prerequisites are kept to introductory calculus level so that the book remains accessible at the same time to pure mathematicians (as a smoothand somewhat heuristic introdcution to this theory) and to applied mathematicians, numerical engineers and theoretical physicists (as a tool to treat problems involving products of distributions).

Methods of the Theory of Generalized Functions

Methods of the Theory of Generalized Functions PDF Author: V. S. Vladimirov
Publisher: CRC Press
ISBN: 9780415273565
Category : Mathematics
Languages : en
Pages : 332

Book Description
This volume presents the general theory of generalized functions, including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner and Poisson integral transforms and operational calculus, with the traditional material augmented by the theory of Fourier series, abelian theorems, and boundary values of helomorphic functions for one and several variables. The author addresses several facets in depth, including convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions, and multiplication of generalized functions. This book will meet the needs of researchers, engineers, and students of applied mathematics, control theory, and the engineering sciences.

On the Foundations of Nonlinear Generalized Functions I and II

On the Foundations of Nonlinear Generalized Functions I and II PDF Author: Michael Grosser
Publisher: American Mathematical Soc.
ISBN: 0821827294
Category : Mathematics
Languages : en
Pages : 113

Book Description
In part 1 of this title the authors construct a diffeomorphism invariant (Colombeau-type) differential algebra canonically containing the space of distributions in the sense of L. Schwartz. Employing differential calculus in infinite dimensional (convenient) vector spaces, previous attempts in this direction are unified and completed. Several classification results are achieved and applications to nonlinear differential equations involving singularities are given.

Generalized Functions and Fourier Analysis

Generalized Functions and Fourier Analysis PDF Author: Michael Oberguggenberger
Publisher: Birkhäuser
ISBN: 3319519115
Category : Mathematics
Languages : en
Pages : 280

Book Description
This book gives an excellent and up-to-date overview on the convergence and joint progress in the fields of Generalized Functions and Fourier Analysis, notably in the core disciplines of pseudodifferential operators, microlocal analysis and time-frequency analysis. The volume is a collection of chapters addressing these fields, their interaction, their unifying concepts and their applications and is based on scientific activities related to the International Association for Generalized Functions (IAGF) and the ISAAC interest groups on Pseudo-Differential Operators (IGPDO) and on Generalized Functions (IGGF), notably on the longstanding collaboration of these groups within ISAAC.

A Nonlinear Theory of Generalized Functions

A Nonlinear Theory of Generalized Functions PDF Author: Hebe de Azevedo Biagioni
Publisher: Springer
ISBN: 3540469818
Category : Mathematics
Languages : en
Pages : 226

Book Description
This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applications are not dissociated it may also be useful for physicists and engineers. The needed prerequisites for its reading are essentially reduced to the classical notions of differential calculus and the theory of integration over n-dimensional euclidean spaces.

Generalized Calculus with Applications to Matter and Forces

Generalized Calculus with Applications to Matter and Forces PDF Author: Luis Manuel Braga de Costa Campos
Publisher: CRC Press
ISBN: 1420071157
Category : Mathematics
Languages : en
Pages : 888

Book Description
Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: Gauss and Stokes’ theorems in the differential geometry, tensor calculus, and theory of potential fields Self-adjoint and non-self-adjoint problems for linear differential equations and nonlinear problems with large deformations Multipolar expansions and Green’s functions for elastic strings and bars, potential and rotational flow, electro- and magnetostatics, and more This third volume in the series Mathematics and Physics for Science and Technology is designed to complete the theory of functions and its application to potential fields, relating generalized functions to broader follow-on topics like differential equations. Featuring step-by-step examples with interpretations of results and discussions of assumptions and their consequences, Generalized Calculus with Applications to Matter and Forces enables readers to construct mathematical–physical models suited to new observations or novel engineering devices.