Author: Stuart Antman
Publisher: Springer Science & Business Media
ISBN: 1475741472
Category : Mathematics
Languages : en
Pages : 762
Book Description
The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.
Nonlinear Problems of Elasticity
Author: Stuart Antman
Publisher: Springer Science & Business Media
ISBN: 1475741472
Category : Mathematics
Languages : en
Pages : 762
Book Description
The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.
Publisher: Springer Science & Business Media
ISBN: 1475741472
Category : Mathematics
Languages : en
Pages : 762
Book Description
The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.
Some Nonlinear Problems in Riemannian Geometry
Author: Thierry Aubin
Publisher: Springer Science & Business Media
ISBN: 3662130068
Category : Mathematics
Languages : en
Pages : 414
Book Description
This book deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, geometric and topological methods. It explores important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved.
Publisher: Springer Science & Business Media
ISBN: 3662130068
Category : Mathematics
Languages : en
Pages : 414
Book Description
This book deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, geometric and topological methods. It explores important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved.
Newton Methods for Nonlinear Problems
Author: Peter Deuflhard
Publisher: Springer Science & Business Media
ISBN: 9783540210993
Category : Mathematics
Languages : en
Pages : 444
Book Description
This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.
Publisher: Springer Science & Business Media
ISBN: 9783540210993
Category : Mathematics
Languages : en
Pages : 444
Book Description
This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.
Modeling Nonlinear Problems in the Mechanics of Strings and Rods
Author: Oliver M. O'Reilly
Publisher: Springer
ISBN: 331950598X
Category : Mathematics
Languages : en
Pages : 434
Book Description
This book presents theories of deformable elastic strings and rods and their application to broad classes of problems. Readers will gain insights into the formulation and analysis of models for mechanical and biological systems. Emphasis is placed on how the balance laws interplay with constitutive relations to form a set of governing equations. For certain classes of problems, it is shown how a balance of material momentum can play a key role in forming the equations of motion. The first half of the book is devoted to the purely mechanical theory of a string and its applications. The second half of the book is devoted to rod theories, including Euler’s theory of the elastica, Kirchhoff ’s theory of an elastic rod, and a range of Cosserat rod theories. A variety of classic and recent applications of these rod theories are examined. Two supplemental chapters, the first on continuum mechanics of three-dimensional continua and the second on methods from variational calculus, are included to provide relevant background for students. This book is suited for graduate-level courses on the dynamics of nonlinearly elastic rods and strings.
Publisher: Springer
ISBN: 331950598X
Category : Mathematics
Languages : en
Pages : 434
Book Description
This book presents theories of deformable elastic strings and rods and their application to broad classes of problems. Readers will gain insights into the formulation and analysis of models for mechanical and biological systems. Emphasis is placed on how the balance laws interplay with constitutive relations to form a set of governing equations. For certain classes of problems, it is shown how a balance of material momentum can play a key role in forming the equations of motion. The first half of the book is devoted to the purely mechanical theory of a string and its applications. The second half of the book is devoted to rod theories, including Euler’s theory of the elastica, Kirchhoff ’s theory of an elastic rod, and a range of Cosserat rod theories. A variety of classic and recent applications of these rod theories are examined. Two supplemental chapters, the first on continuum mechanics of three-dimensional continua and the second on methods from variational calculus, are included to provide relevant background for students. This book is suited for graduate-level courses on the dynamics of nonlinearly elastic rods and strings.
Linear and Nonlinear Inverse Problems with Practical Applications
Author: Jennifer L. Mueller
Publisher: SIAM
ISBN: 1611972345
Category : Mathematics
Languages : en
Pages : 349
Book Description
Inverse problems arise in practical applications whenever there is a need to interpret indirect measurements. This book explains how to identify ill-posed inverse problems arising in practice and gives a hands-on guide to designing computational solution methods for them, with related codes on an accompanying website. The guiding linear inversion examples are the problem of image deblurring, x-ray tomography, and backward parabolic problems, including heat transfer. A thorough treatment of electrical impedance tomography is used as the guiding nonlinear inversion example which combines the analytic-geometric research tradition and the regularization-based school of thought in a fruitful manner. This book is complete with exercises and project topics, making it ideal as a classroom textbook or self-study guide for graduate and advanced undergraduate students in mathematics, engineering or physics who wish to learn about computational inversion. It also acts as a useful guide for researchers who develop inversion techniques in high-tech industry.
Publisher: SIAM
ISBN: 1611972345
Category : Mathematics
Languages : en
Pages : 349
Book Description
Inverse problems arise in practical applications whenever there is a need to interpret indirect measurements. This book explains how to identify ill-posed inverse problems arising in practice and gives a hands-on guide to designing computational solution methods for them, with related codes on an accompanying website. The guiding linear inversion examples are the problem of image deblurring, x-ray tomography, and backward parabolic problems, including heat transfer. A thorough treatment of electrical impedance tomography is used as the guiding nonlinear inversion example which combines the analytic-geometric research tradition and the regularization-based school of thought in a fruitful manner. This book is complete with exercises and project topics, making it ideal as a classroom textbook or self-study guide for graduate and advanced undergraduate students in mathematics, engineering or physics who wish to learn about computational inversion. It also acts as a useful guide for researchers who develop inversion techniques in high-tech industry.
Nonlinear Problems with Lack of Compactness
Author: Giovanni Molica Bisci
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110652013
Category : Mathematics
Languages : en
Pages : 290
Book Description
This authoritative book presents recent research results on nonlinear problems with lack of compactness. The topics covered include several nonlinear problems in the Euclidean setting as well as variational problems on manifolds. The combination of deep techniques in nonlinear analysis with applications to a variety of problems make this work an essential source of information for researchers and graduate students working in analysis and PDE's.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110652013
Category : Mathematics
Languages : en
Pages : 290
Book Description
This authoritative book presents recent research results on nonlinear problems with lack of compactness. The topics covered include several nonlinear problems in the Euclidean setting as well as variational problems on manifolds. The combination of deep techniques in nonlinear analysis with applications to a variety of problems make this work an essential source of information for researchers and graduate students working in analysis and PDE's.
Numerical Methods for Nonlinear Variational Problems
Author: Roland Glowinski
Publisher: Springer
ISBN: 9783662126158
Category : Science
Languages : en
Pages : 493
Book Description
This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.
Publisher: Springer
ISBN: 9783662126158
Category : Science
Languages : en
Pages : 493
Book Description
This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.
An Introduction to Nonlinear Functional Analysis and Elliptic Problems
Author: Antonio Ambrosetti
Publisher: Springer Science & Business Media
ISBN: 0817681140
Category : Mathematics
Languages : en
Pages : 203
Book Description
This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
Publisher: Springer Science & Business Media
ISBN: 0817681140
Category : Mathematics
Languages : en
Pages : 203
Book Description
This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
Nonlinear Problems of Engineering
Author: William F. Ames
Publisher: Academic Press
ISBN: 148322581X
Category : Science
Languages : en
Pages : 267
Book Description
Nonlinear Problems of Engineering reviews certain nonlinear problems of engineering. This book provides a discussion of nonlinear problems that occur in four areas, namely, mathematical methods, fluid mechanics, mechanics of solids, and transport phenomena. Organized into 15 chapters, this book begins with an overview of some of the fundamental ideas of two mathematical theories, namely, invariant imbedding and dynamic programming. This text then explores nonlinear integral equations, which have long occupied a prominent place in mathematical analysis. Other chapters consider the phenomena associated with essentially divergent small-divisor series, such as may occur in the formal solution of differential equations that represent the oscillations of conservative dynamical systems. This book discusses as well the mechanics of idealized textiles consisting of inextensible filaments. The final chapter deals with the use of the Peaceman–Rachford alternating direction implicit method for solving the finite difference analogs of boundary value problems. This book is a valuable resource for engineers and mathematicians.
Publisher: Academic Press
ISBN: 148322581X
Category : Science
Languages : en
Pages : 267
Book Description
Nonlinear Problems of Engineering reviews certain nonlinear problems of engineering. This book provides a discussion of nonlinear problems that occur in four areas, namely, mathematical methods, fluid mechanics, mechanics of solids, and transport phenomena. Organized into 15 chapters, this book begins with an overview of some of the fundamental ideas of two mathematical theories, namely, invariant imbedding and dynamic programming. This text then explores nonlinear integral equations, which have long occupied a prominent place in mathematical analysis. Other chapters consider the phenomena associated with essentially divergent small-divisor series, such as may occur in the formal solution of differential equations that represent the oscillations of conservative dynamical systems. This book discusses as well the mechanics of idealized textiles consisting of inextensible filaments. The final chapter deals with the use of the Peaceman–Rachford alternating direction implicit method for solving the finite difference analogs of boundary value problems. This book is a valuable resource for engineers and mathematicians.
The Nonlinear Diffusion Equation
Author: J.M. Burgers
Publisher: Springer Science & Business Media
ISBN: 940101745X
Category : Mathematics
Languages : en
Pages : 183
Book Description
Since the 'Introduction' to the main text gives an account of the way in which the problems treated in the following pages originated, this 'Preface' may be limited to an acknowledgement of the support the work has received. It started during the pe riod when I was professor of aero- and hydrodynamics at the Technical University in Delft, Netherlands, and many discussions with colleagues ha ve in:fluenced its devel opment. Oftheir names I mention here only that ofH. A. Kramers. Papers No. 1-13 ofthe list given at the end ofthe text were written during that period. Severa! ofthese were attempts to explore ideas which later had to be abandoned, but gradually a line of thought emerged which promised more definite results. This line began to come to the foreground in pa per No. 3 (1939}, while a preliminary formulation ofthe results was given in paper No. 12 (1954}. At that time, however, there still was missing a practica! method for manipulating a certain distribution function of central interest. A six months stay at the Hydrodynamics Laboratories ofthe California Institute of Technology, Pasadena, California (1950-1951}, was supported by a Contract with the Department of the Air F orce, N o. AF 33(038}-17207. A course of lectures was given during this period, which were published in typescript under the title 'On Turbulent Fluid Motion', as Report No. E-34. 1, July 1951, of the Hydrodynamics Laboratory.
Publisher: Springer Science & Business Media
ISBN: 940101745X
Category : Mathematics
Languages : en
Pages : 183
Book Description
Since the 'Introduction' to the main text gives an account of the way in which the problems treated in the following pages originated, this 'Preface' may be limited to an acknowledgement of the support the work has received. It started during the pe riod when I was professor of aero- and hydrodynamics at the Technical University in Delft, Netherlands, and many discussions with colleagues ha ve in:fluenced its devel opment. Oftheir names I mention here only that ofH. A. Kramers. Papers No. 1-13 ofthe list given at the end ofthe text were written during that period. Severa! ofthese were attempts to explore ideas which later had to be abandoned, but gradually a line of thought emerged which promised more definite results. This line began to come to the foreground in pa per No. 3 (1939}, while a preliminary formulation ofthe results was given in paper No. 12 (1954}. At that time, however, there still was missing a practica! method for manipulating a certain distribution function of central interest. A six months stay at the Hydrodynamics Laboratories ofthe California Institute of Technology, Pasadena, California (1950-1951}, was supported by a Contract with the Department of the Air F orce, N o. AF 33(038}-17207. A course of lectures was given during this period, which were published in typescript under the title 'On Turbulent Fluid Motion', as Report No. E-34. 1, July 1951, of the Hydrodynamics Laboratory.