Author: Bas Lemmens
Publisher: Cambridge University Press
ISBN: 0521898811
Category : Mathematics
Languages : en
Pages : 337
Book Description
Guides the reader through the nonlinear Perron-Frobenius theory, introducing them to recent developments and challenging open problems.
Nonlinear Perron-Frobenius Theory
Author: Bas Lemmens
Publisher: Cambridge University Press
ISBN: 0521898811
Category : Mathematics
Languages : en
Pages : 337
Book Description
Guides the reader through the nonlinear Perron-Frobenius theory, introducing them to recent developments and challenging open problems.
Publisher: Cambridge University Press
ISBN: 0521898811
Category : Mathematics
Languages : en
Pages : 337
Book Description
Guides the reader through the nonlinear Perron-Frobenius theory, introducing them to recent developments and challenging open problems.
Nonlinear Perron-Frobenius Theory
Author: Bas Lemmens
Publisher:
ISBN: 9781107226340
Category : Algebras, Linear
Languages : en
Pages : 323
Book Description
In the past several decades the classical Perron-Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron-Frobenius theory has found significant uses in computer science, mathematical biology, game theory and the study of dynamical systems. This is the first comprehensive and unified introduction to nonlinear Perron-Frobenius theory suitable for graduate students and researchers entering the field for the first time. It acquaints the reader with recent developments and provides a guide to challenging open problems. To enhance accessibility, the focus is on finite dimensional nonlinear Perron-Frobenius theory, but pointers are provided to infinite dimensional results. Prerequisites are little more than basic real analysis and topology.
Publisher:
ISBN: 9781107226340
Category : Algebras, Linear
Languages : en
Pages : 323
Book Description
In the past several decades the classical Perron-Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron-Frobenius theory has found significant uses in computer science, mathematical biology, game theory and the study of dynamical systems. This is the first comprehensive and unified introduction to nonlinear Perron-Frobenius theory suitable for graduate students and researchers entering the field for the first time. It acquaints the reader with recent developments and provides a guide to challenging open problems. To enhance accessibility, the focus is on finite dimensional nonlinear Perron-Frobenius theory, but pointers are provided to infinite dimensional results. Prerequisites are little more than basic real analysis and topology.
Interval Methods for Systems of Equations
Author: A. Neumaier
Publisher: Cambridge University Press
ISBN: 052133196X
Category : Mathematics
Languages : en
Pages : 275
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: Cambridge University Press
ISBN: 052133196X
Category : Mathematics
Languages : en
Pages : 275
Book Description
Mathematics of Computing -- Numerical Analysis.
Positive Dynamical Systems in Discrete Time
Author: Ulrich Krause
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110365693
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a system are nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences. "The author has greatly expanded the field of positive systems in surprising ways." - Prof. Dr. David G. Luenberger, Stanford University(USA)
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110365693
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a system are nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences. "The author has greatly expanded the field of positive systems in surprising ways." - Prof. Dr. David G. Luenberger, Stanford University(USA)
Positive Transfer Operators and Decay of Correlations
Author: Viviane Baladi
Publisher: World Scientific
ISBN: 9789810233280
Category : Science
Languages : en
Pages : 332
Book Description
Although individual orbits of chaotic dynamical systems are by definition unpredictable, the average behavior of typical trajectories can often be given a precise statistical description. Indeed, there often exist ergodic invariant measures with special additional features. For a given invariant measure, and a class of observables, the correlation functions tell whether (and how fast) the system ?mixes?, i.e. ?forgets? its initial conditions.This book, addressed to mathematicians and mathematical (or mathematically inclined) physicists, shows how the powerful technology of transfer operators, imported from statistical physics, has been used recently to construct relevant invariant measures, and to study the speed of decay of their correlation functions, for many chaotic systems. Links with dynamical zeta functions are explained.The book is intended for graduate students or researchers entering the field, and the technical prerequisites have been kept to a minimum.
Publisher: World Scientific
ISBN: 9789810233280
Category : Science
Languages : en
Pages : 332
Book Description
Although individual orbits of chaotic dynamical systems are by definition unpredictable, the average behavior of typical trajectories can often be given a precise statistical description. Indeed, there often exist ergodic invariant measures with special additional features. For a given invariant measure, and a class of observables, the correlation functions tell whether (and how fast) the system ?mixes?, i.e. ?forgets? its initial conditions.This book, addressed to mathematicians and mathematical (or mathematically inclined) physicists, shows how the powerful technology of transfer operators, imported from statistical physics, has been used recently to construct relevant invariant measures, and to study the speed of decay of their correlation functions, for many chaotic systems. Links with dynamical zeta functions are explained.The book is intended for graduate students or researchers entering the field, and the technical prerequisites have been kept to a minimum.
Laws of Chaos
Author: Abraham Boyarsky
Publisher: Springer Science & Business Media
ISBN: 1461220246
Category : Mathematics
Languages : en
Pages : 413
Book Description
A hundred years ago it became known that deterministic systems can exhibit very complex behavior. By proving that ordinary differential equations can exhibit strange behavior, Poincare undermined the founda tions of Newtonian physics and opened a window to the modern theory of nonlinear dynamics and chaos. Although in the 1930s and 1940s strange behavior was observed in many physical systems, the notion that this phenomenon was inherent in deterministic systems was never suggested. Even with the powerful results of S. Smale in the 1960s, complicated be havior of deterministic systems remained no more than a mathematical curiosity. Not until the late 1970s, with the advent of fast and cheap comput ers, was it recognized that chaotic behavior was prevalent in almost all domains of science and technology. Smale horseshoes began appearing in many scientific fields. In 1971, the phrase 'strange attractor' was coined to describe complicated long-term behavior of deterministic systems, and the term quickly became a paradigm of nonlinear dynamics. The tools needed to study chaotic phenomena are entirely different from those used to study periodic or quasi-periodic systems; these tools are analytic and measure-theoretic rather than geometric. For example, in throwing a die, we can study the limiting behavior of the system by viewing the long-term behavior of individual orbits. This would reveal incomprehensibly complex behavior. Or we can shift our perspective: Instead of viewing the long-term outcomes themselves, we can view the probabilities of these outcomes. This is the measure-theoretic approach taken in this book.
Publisher: Springer Science & Business Media
ISBN: 1461220246
Category : Mathematics
Languages : en
Pages : 413
Book Description
A hundred years ago it became known that deterministic systems can exhibit very complex behavior. By proving that ordinary differential equations can exhibit strange behavior, Poincare undermined the founda tions of Newtonian physics and opened a window to the modern theory of nonlinear dynamics and chaos. Although in the 1930s and 1940s strange behavior was observed in many physical systems, the notion that this phenomenon was inherent in deterministic systems was never suggested. Even with the powerful results of S. Smale in the 1960s, complicated be havior of deterministic systems remained no more than a mathematical curiosity. Not until the late 1970s, with the advent of fast and cheap comput ers, was it recognized that chaotic behavior was prevalent in almost all domains of science and technology. Smale horseshoes began appearing in many scientific fields. In 1971, the phrase 'strange attractor' was coined to describe complicated long-term behavior of deterministic systems, and the term quickly became a paradigm of nonlinear dynamics. The tools needed to study chaotic phenomena are entirely different from those used to study periodic or quasi-periodic systems; these tools are analytic and measure-theoretic rather than geometric. For example, in throwing a die, we can study the limiting behavior of the system by viewing the long-term behavior of individual orbits. This would reveal incomprehensibly complex behavior. Or we can shift our perspective: Instead of viewing the long-term outcomes themselves, we can view the probabilities of these outcomes. This is the measure-theoretic approach taken in this book.
Theory and Applications of Coupled Map Lattices
Author: K. Kaneko
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 208
Book Description
The technique of the coupled map lattice (CML) is a rapidly developing field in nonlinear dynamics at present. This book gives a fully illustrative overview of current research in the field. A CML is a dynamical system in which there is some interaction ('coupled') between continuous state elements, which evolve in discrete time ('map') and are distributed on a discrete space ('lattice'). This book investigates both the theoretical aspects and applications of CMLs to spatially extended systems in nonlinear dynamical systems.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 208
Book Description
The technique of the coupled map lattice (CML) is a rapidly developing field in nonlinear dynamics at present. This book gives a fully illustrative overview of current research in the field. A CML is a dynamical system in which there is some interaction ('coupled') between continuous state elements, which evolve in discrete time ('map') and are distributed on a discrete space ('lattice'). This book investigates both the theoretical aspects and applications of CMLs to spatially extended systems in nonlinear dynamical systems.
The Koopman Operator in Systems and Control
Author: Alexandre Mauroy
Publisher: Springer Nature
ISBN: 3030357139
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.
Publisher: Springer Nature
ISBN: 3030357139
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.
Templates for the Solution of Algebraic Eigenvalue Problems
Author: Zhaojun Bai
Publisher: SIAM
ISBN: 0898714710
Category : Computers
Languages : en
Pages : 430
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: SIAM
ISBN: 0898714710
Category : Computers
Languages : en
Pages : 430
Book Description
Mathematics of Computing -- Numerical Analysis.
Applied Nonlinear Control
Author: Jean-Jacques E. Slotine
Publisher:
ISBN: 9780130400499
Category : Automatic control
Languages : en
Pages : 461
Book Description
In this work, the authors present a global perspective on the methods available for analysis and design of non-linear control systems and detail specific applications. They provide a tutorial exposition of the major non-linear systems analysis techniques followed by a discussion of available non-linear design methods.
Publisher:
ISBN: 9780130400499
Category : Automatic control
Languages : en
Pages : 461
Book Description
In this work, the authors present a global perspective on the methods available for analysis and design of non-linear control systems and detail specific applications. They provide a tutorial exposition of the major non-linear systems analysis techniques followed by a discussion of available non-linear design methods.