Nonlinear Time Series Analysis of Economic and Financial Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nonlinear Time Series Analysis of Economic and Financial Data PDF full book. Access full book title Nonlinear Time Series Analysis of Economic and Financial Data by Philip Rothman. Download full books in PDF and EPUB format.

Nonlinear Time Series Analysis of Economic and Financial Data

Nonlinear Time Series Analysis of Economic and Financial Data PDF Author: Philip Rothman
Publisher: Springer Science & Business Media
ISBN: 0792383796
Category : Business & Economics
Languages : en
Pages : 394

Book Description
Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.

Nonlinear Time Series Analysis of Economic and Financial Data

Nonlinear Time Series Analysis of Economic and Financial Data PDF Author: Philip Rothman
Publisher: Springer Science & Business Media
ISBN: 0792383796
Category : Business & Economics
Languages : en
Pages : 394

Book Description
Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.

Non-Linear Time Series Models in Empirical Finance

Non-Linear Time Series Models in Empirical Finance PDF Author: Philip Hans Franses
Publisher: Cambridge University Press
ISBN: 0521770416
Category : Business & Economics
Languages : en
Pages : 299

Book Description
This 2000 volume reviews non-linear time series models, and their applications to financial markets.

Modeling Financial Time Series with S-PLUS

Modeling Financial Time Series with S-PLUS PDF Author: Eric Zivot
Publisher: Springer Science & Business Media
ISBN: 0387217630
Category : Business & Economics
Languages : en
Pages : 632

Book Description
The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.

Nonlinear Modeling of Economic and Financial Time-Series

Nonlinear Modeling of Economic and Financial Time-Series PDF Author: Fredj Jawadi
Publisher: Emerald Group Publishing
ISBN: 0857244906
Category : Business & Economics
Languages : en
Pages : 224

Book Description
Presents researches in linear and nonlinear modelling of economic and financial time-series. This book provides a comprehensive understanding of financial and economic dynamics in various aspects using modern financial econometric methods. It also presents and discusses research findings and their implications.

Modelling Financial Time Series

Modelling Financial Time Series PDF Author: Stephen J. Taylor
Publisher: World Scientific
ISBN: 9812770852
Category : Business & Economics
Languages : en
Pages : 297

Book Description
This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.

Modelling and Forecasting Financial Data

Modelling and Forecasting Financial Data PDF Author: Abdol S. Soofi
Publisher: Springer Science & Business Media
ISBN: 9780792376804
Category : Business & Economics
Languages : en
Pages : 528

Book Description
Over the last decade, dynamical systems theory and related nonlinear methods have had a major impact on the analysis of time series data from complex systems. Recent developments in mathematical methods of state-space reconstruction, time-delay embedding, and surrogate data analysis, coupled with readily accessible and powerful computational facilities used in gathering and processing massive quantities of high-frequency data, have provided theorists and practitioners unparalleled opportunities for exploratory data analysis, modelling, forecasting, and control. Until now, research exploring the application of nonlinear dynamics and associated algorithms to the study of economies and markets as complex systems is sparse and fragmentary at best. Modelling and Forecasting Financial Data brings together a coherent and accessible set of chapters on recent research results on this topic. To make such methods readily useful in practice, the contributors to this volume have agreed to make available to readers upon request all computer programs used to implement the methods discussed in their respective chapters. Modelling and Forecasting Financial Data is a valuable resource for researchers and graduate students studying complex systems in finance, biology, and physics, as well as those applying such methods to nonlinear time series analysis and signal processing.

Nonlinear Economic Models

Nonlinear Economic Models PDF Author: John Creedy
Publisher: Edward Elgar Publishing
ISBN:
Category : Business & Economics
Languages : en
Pages : 312

Book Description
A sequel to Creedy and Martin's (eds.) Chaos and Nonlinear Models (1994). Compiles recent developments in such techniques as cross- sectional studies of income distribution and discrete choice models, time series models of exchange rate dynamics and jump processes, and artificial neural networks and genetic algorithms of financial markets. Also considers the development of theoretical models and estimating and testing methods, with a wide range of applications in microeconomics, macroeconomics, labor, and finance. Annotation copyrighted by Book News, Inc., Portland, OR

The Econometric Modelling of Financial Time Series

The Econometric Modelling of Financial Time Series PDF Author: Terence C. Mills
Publisher: Cambridge University Press
ISBN: 9780521883818
Category : Business & Economics
Languages : en
Pages : 468

Book Description
Terence Mills' best-selling graduate textbook provides detailed coverage of research techniques and findings relating to the empirical analysis of financial markets. In its previous editions it has become required reading for many graduate courses on the econometrics of financial modelling. This third edition, co-authored with Raphael Markellos, contains a wealth of material reflecting the developments of the last decade. Particular attention is paid to the wide range of nonlinear models that are used to analyse financial data observed at high frequencies and to the long memory characteristics found in financial time series. The central material on unit root processes and the modelling of trends and structural breaks has been substantially expanded into a chapter of its own. There is also an extended discussion of the treatment of volatility, accompanied by a new chapter on nonlinearity and its testing.

Modelling Nonlinear Economic Time Series

Modelling Nonlinear Economic Time Series PDF Author: Timo Teräsvirta
Publisher: OUP Oxford
ISBN: 9780199587148
Category : Business & Economics
Languages : en
Pages : 592

Book Description
This book contains an extensive up-to-date overview of nonlinear time series models and their application to modelling economic relationships. It considers nonlinear models in stationary and nonstationary frameworks, and both parametric and nonparametric models are discussed. The book contains examples of nonlinear models in economic theory and presents the most common nonlinear time series models. Importantly, it shows the reader how to apply these models in practice. For thispurpose, the building of various nonlinear models with its three stages of model building: specification, estimation and evaluation, is discussed in detail and is illustrated by several examples involving both economic and non-economic data. Since estimation of nonlinear time series models is carried outusing numerical algorithms, the book contains a chapter on estimating parametric nonlinear models and another on estimating nonparametric ones.Forecasting is a major reason for building time series models, linear or nonlinear. The book contains a discussion on forecasting with nonlinear models, both parametric and nonparametric, and considers numerical techniques necessary for computing multi-period forecasts from them. The main focus of the book is on models of the conditional mean, but models of the conditional variance, mainly those of autoregressive conditional heteroskedasticity, receive attention as well. A separate chapter isdevoted to state space models. As a whole, the book is an indispensable tool for researchers interested in nonlinear time series and is also suitable for teaching courses in econometrics and time series analysis.

Nonlinear Time Series

Nonlinear Time Series PDF Author: Jianqing Fan
Publisher: Springer Science & Business Media
ISBN: 0387693955
Category : Mathematics
Languages : en
Pages : 565

Book Description
This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.