Nonlinear Finite Element Formulation of the Soil Structure Interaction Through Two Parameter Foundation Model PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nonlinear Finite Element Formulation of the Soil Structure Interaction Through Two Parameter Foundation Model PDF full book. Access full book title Nonlinear Finite Element Formulation of the Soil Structure Interaction Through Two Parameter Foundation Model by Taraka Ravi Shankar Mullapudi. Download full books in PDF and EPUB format.

Nonlinear Finite Element Formulation of the Soil Structure Interaction Through Two Parameter Foundation Model

Nonlinear Finite Element Formulation of the Soil Structure Interaction Through Two Parameter Foundation Model PDF Author: Taraka Ravi Shankar Mullapudi
Publisher:
ISBN:
Category : Nonlinear mechanics
Languages : en
Pages : 92

Book Description
"The response of shallow and raft foundations is having a significant importance due to its complex behavior because of the semi-infinite soil media. Winkler's model is the simplest model to deal with the structure and soil. The Winkler model represents the foundation reaction as proportional to the soil displacement at a particular point, which results in the elasticity of the soil being the only parameter in consideration. But in reality the soil cohesiveness is having a significant contribution in soil structure interaction, and therefore the consideration of coupling effects of Winkler springs need to be accounted. Most of the existing elements either consider certain parameters of the foundation or assume an elastic beam and foundation response. In this research a new finite element formulation was developed in which these limitations were eliminated. This improved model can be viewed as a soil with a combination of cohesive behavior which transmits the rotation due to bending in addition to the Winkler effect. The non linear response of structures resting on this improved foundation model can be analyzed by assuming that the foundation resists compression and tension. In reality soil is very weak in tension and its tension capacity needs to be neglected, which leads to lift-off regions at different locations. This phenomenon becomes much more complicated by considering the inelastic soil structure behavior, which leads to a highly nonlinear problem. In order to estimate the necessary nonlinear soil parameters, an analytical procedure based on the Vlasov model is proposed. The presented solutions and applications show the superiority of the proposed nonlinear foundation model"--Abstract, leaf v.

Nonlinear Finite Element Formulation of the Soil Structure Interaction Through Two Parameter Foundation Model

Nonlinear Finite Element Formulation of the Soil Structure Interaction Through Two Parameter Foundation Model PDF Author: Taraka Ravi Shankar Mullapudi
Publisher:
ISBN:
Category : Nonlinear mechanics
Languages : en
Pages : 92

Book Description
"The response of shallow and raft foundations is having a significant importance due to its complex behavior because of the semi-infinite soil media. Winkler's model is the simplest model to deal with the structure and soil. The Winkler model represents the foundation reaction as proportional to the soil displacement at a particular point, which results in the elasticity of the soil being the only parameter in consideration. But in reality the soil cohesiveness is having a significant contribution in soil structure interaction, and therefore the consideration of coupling effects of Winkler springs need to be accounted. Most of the existing elements either consider certain parameters of the foundation or assume an elastic beam and foundation response. In this research a new finite element formulation was developed in which these limitations were eliminated. This improved model can be viewed as a soil with a combination of cohesive behavior which transmits the rotation due to bending in addition to the Winkler effect. The non linear response of structures resting on this improved foundation model can be analyzed by assuming that the foundation resists compression and tension. In reality soil is very weak in tension and its tension capacity needs to be neglected, which leads to lift-off regions at different locations. This phenomenon becomes much more complicated by considering the inelastic soil structure behavior, which leads to a highly nonlinear problem. In order to estimate the necessary nonlinear soil parameters, an analytical procedure based on the Vlasov model is proposed. The presented solutions and applications show the superiority of the proposed nonlinear foundation model"--Abstract, leaf v.

Modelling of Soil-Structure Interaction

Modelling of Soil-Structure Interaction PDF Author: V. Kolár
Publisher: Elsevier
ISBN: 0444598987
Category : Technology & Engineering
Languages : en
Pages : 334

Book Description
Distributed in the East European countries, China, Northern Korea, Cuba, Vietnam and Mongolia by Academia, Prague, CzechoslovakiaThis book is based on the efficient subsoil model introduced by the authors in 1977 and applied in the last ten years in the design of foundations. From the designer's point of view, the model considerably reduces the extent of the calculations connected with the numerical analysis of soil-structure interaction. The algorithms presented are geared for use on mini- and personal computers and can be used in any numerical method. A special chapter is devoted to the implementation of the model in the NE-XX finite element program package, illustrated with diagrams, tables and practical examples.Besides presenting the energy definition and general theory of both 2D and 3D model forms, the book also deals with practical problems such as Kirchhoff's and Mindlin's foundation plates, interaction between neighbouring structures, actual values of physical constants of subsoils and natural frequencies and shapes of foundation plates.Today, researchers and engineers can choose from a wide range of soil models, some fairly simple and others very elaborate. However, the gap which has long existed between geomechanical theory and everyday design practice still persists. The present book is intended to suit the practical needs of the designer by introducing an efficient subsoil model in which the surrounding soil is substituted by certain properties of the structure-soil interface. When a more precise solution is required, a more sophisticated model form can be used. Its additional degrees of deformation freedom can better express the behaviour of layered or generally unhomogeneous subsoil. As a result, designers will find that this book goes some way towards bridging the above-mentioned gap between structural design theory and day-to-day practice.

Soil-Structure Interaction: Numerical Analysis and Modelling

Soil-Structure Interaction: Numerical Analysis and Modelling PDF Author: J.W. Bull
Publisher: CRC Press
ISBN: 1482271397
Category : Architecture
Languages : en
Pages : 742

Book Description
This book describes how a number of different methods of analysis and modelling, including the boundary element method, the finite element method, and a range of classical methods, are used to answer some of the questions associated with soil-structure interaction.

Deterministic Numerical Modeling of Soil Structure Interaction

Deterministic Numerical Modeling of Soil Structure Interaction PDF Author: Stephane Grange
Publisher: John Wiley & Sons
ISBN: 1786307987
Category : Technology & Engineering
Languages : en
Pages : 242

Book Description
In order to describe soil–structure interaction in various situations (nonlinear, static, dynamic, hydro-mechanical couplings), this book gives an overview of the main modeling methods developed in geotechnical engineering. The chapters are centered around: the finite element method (FEM), the finite difference method (FDM), and the discrete element method (DEM). Deterministic Numerical Modeling of Soil–Structure Interaction allows the reader to explore the classical and well-known FEM and FDM, using interface and contact elements available for coupled hydro-mechanical problems. Furthermore, this book provides insight on the DEM, adapted for interaction laws at the grain level. Within a classical finite element framework, the concept of macro-element is introduced, which generalizes constitutive laws of SSI and is particularly straightforward in dynamic situations. Finally, this book presents the SSI, in the case of a group of structures, such as buildings in a town, using the notion of metamaterials and a geophysics approach.

Developments in Dynamic Soil-Structure Interaction

Developments in Dynamic Soil-Structure Interaction PDF Author: Polat Gülkan
Publisher: Springer Science & Business Media
ISBN: 9401117551
Category : Science
Languages : en
Pages : 446

Book Description
For the last couple of decades it has been recognized that the foundation material on which a structure is constructed may interact dynamically with the structure during its response to dynamic excitation to the extent that the stresses and deflections in the system are modified from the values that would have been developed if it had been on a rigid foundation. This phenomenon is examined in detail in the book. The basic solutions are examined in time and frequency domains and finite element and boundary element solutions compared. Experimental investigations aimed at correlation and verification with theory are described in detail. A wide variety of SSI problems may be formulated and solved approximately using simplified models in lieu of rigorous procedures; the book gives a good overview of these methods. A feature which often lacks in other texts on the subject is the way in which dynamic behavior of soil can be modeled. Two contributors have addressed this problem from the computational and physical characterization viewpoints. The book illustrates practical areas with the analysis of tunnel linings and stiffness and damping of pile groups. Finally, design code provisions and derivation of design input motions complete this thorough overview of SSI in conventional engineering practice. Taken in its entirety the book, authored by fifteen well known experts, gives an in-depth review of soil-structure interaction across a broad spectrum of aspects usually not covered in a single volume. It should be a readily useable reference for the research worker as well as the advance level practitioner. (abstract) This book treats the dynamic soil-structure interaction phenomenon across a broad spectrum of aspects ranging from basic theory, simplified and rigorous solution techniques and their comparisons as well as successes in predicting experimentally recorded measurements. Dynamic soil behavior and practical problems are given thorough coverage. It is intended to serve both as a readily understandable reference work for the researcher and the advanced-level practitioner.

Nonlinear Soil-structure Interaction Analysis of One-, Two-, and Three- Dimensional Problems Using Finite Element Method

Nonlinear Soil-structure Interaction Analysis of One-, Two-, and Three- Dimensional Problems Using Finite Element Method PDF Author: Hema Jayalath Siriwardane
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 337

Book Description


Advanced Geotechnical Engineering

Advanced Geotechnical Engineering PDF Author: Chandrakant S. Desai
Publisher: CRC Press
ISBN: 1466515600
Category : Technology & Engineering
Languages : en
Pages : 640

Book Description
Soil-structure interaction is an area of major importance in geotechnical engineering and geomechanics Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models covers computer and analytical methods for a number of geotechnical problems. It introduces the main factors important to the application of computer methods and constitutive models with emphasis on the behavior of soils, rocks, interfaces, and joints, vital for reliable and accurate solutions. This book presents finite element (FE), finite difference (FD), and analytical methods and their applications by using computers, in conjunction with the use of appropriate constitutive models; they can provide realistic solutions for soil–structure problems. A part of this book is devoted to solving practical problems using hand calculations in addition to the use of computer methods. The book also introduces commercial computer codes as well as computer codes developed by the authors. Uses simplified constitutive models such as linear and nonlinear elastic for resistance-displacement response in 1-D problems Uses advanced constitutive models such as elasticplastic, continued yield plasticity and DSC for microstructural changes leading to microcracking, failure and liquefaction Delves into the FE and FD methods for problems that are idealized as two-dimensional (2-D) and three-dimensional (3-D) Covers the application for 3-D FE methods and an approximate procedure called multicomponent methods Includes the application to a number of problems such as dams , slopes, piles, retaining (reinforced earth) structures, tunnels, pavements, seepage, consolidation, involving field measurements, shake table, and centrifuge tests Discusses the effect of interface response on the behavior of geotechnical systems and liquefaction (considered as a microstructural instability) This text is useful to practitioners, students, teachers, and researchers who have backgrounds in geotechnical, structural engineering, and basic mechanics courses.

Nonlinear Finite Element Analysis of Dynamic Soil-foundation-structure Interaction

Nonlinear Finite Element Analysis of Dynamic Soil-foundation-structure Interaction PDF Author: Matthias Preisig
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Book Description


The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method PDF Author: John P. Wolf
Publisher: John Wiley & Sons
ISBN: 9780471486824
Category : Technology & Engineering
Languages : en
Pages : 398

Book Description
A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.

Nonlinear Finite Element Dynamic Analysis of a Two-dimensional Continuum with Application to the Soil Structure Interaction Problem

Nonlinear Finite Element Dynamic Analysis of a Two-dimensional Continuum with Application to the Soil Structure Interaction Problem PDF Author: Mohammed Mohammed Ettouney
Publisher:
ISBN:
Category : Buildings
Languages : en
Pages : 442

Book Description