Author: Gerhard Huebschen
Publisher: Woodhead Publishing
ISBN: 008100057X
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
Materials Characterization Using Nondestructive Evaluation (NDE) Methods
Author: Gerhard Huebschen
Publisher: Woodhead Publishing
ISBN: 008100057X
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
Publisher: Woodhead Publishing
ISBN: 008100057X
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
Nondestructive Characterization of Materials XI
Author: Robert E. Green
Publisher: Springer Nature
ISBN: 3642558593
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
The papers published in these proceedings represent the latest developments in the nondestructive characterization of materials and were presented at the Eleventh International Symposium on Nondestructive Characterization of Materials held in June 2002, in Berlin, Germany.
Publisher: Springer Nature
ISBN: 3642558593
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
The papers published in these proceedings represent the latest developments in the nondestructive characterization of materials and were presented at the Eleventh International Symposium on Nondestructive Characterization of Materials held in June 2002, in Berlin, Germany.
Nondestructive Characterization of Materials
Author: Paul Höller
Publisher: Springer Science & Business Media
ISBN: 3642840035
Category : Technology & Engineering
Languages : en
Pages : 894
Book Description
Engineering structures for reliable function and safety have to be designed such that operational mechanical loads are compensated for by stresses in the components bearable by the materials used. Vhat is "bearable"? First of all it depends on the properties of the chosen materials as well as on several other parameters, e.g. temperature, corrosivity of the environment, elapsed or remaining serviceable life, unexpected deterioration of materials, whatever the source and nature of such deterioration may be: defects, loss of strength, embrittlement, wastage, etc. DEFECTS and PROPERTIES of materials currently determine loadability. Therefore in addition to nondestructive testing for defects there is also a need for nondestructive testing of properties. The third type of information to be supplied by nondestructive measurement pertains to STRESS STATES under OPERATIONAL LOADS, i.e. LOAD-INDUCED plus RESIDUAL STRESSES. Residual stresses normally cannot be calculated; they have to be measured nondestructively; well-approved elastomechanical finite element codes are available and used for calculating load-induced stresses; for redundancy and reliability, engineers, however, need procedures and instrumentation for experimental checks.
Publisher: Springer Science & Business Media
ISBN: 3642840035
Category : Technology & Engineering
Languages : en
Pages : 894
Book Description
Engineering structures for reliable function and safety have to be designed such that operational mechanical loads are compensated for by stresses in the components bearable by the materials used. Vhat is "bearable"? First of all it depends on the properties of the chosen materials as well as on several other parameters, e.g. temperature, corrosivity of the environment, elapsed or remaining serviceable life, unexpected deterioration of materials, whatever the source and nature of such deterioration may be: defects, loss of strength, embrittlement, wastage, etc. DEFECTS and PROPERTIES of materials currently determine loadability. Therefore in addition to nondestructive testing for defects there is also a need for nondestructive testing of properties. The third type of information to be supplied by nondestructive measurement pertains to STRESS STATES under OPERATIONAL LOADS, i.e. LOAD-INDUCED plus RESIDUAL STRESSES. Residual stresses normally cannot be calculated; they have to be measured nondestructively; well-approved elastomechanical finite element codes are available and used for calculating load-induced stresses; for redundancy and reliability, engineers, however, need procedures and instrumentation for experimental checks.
Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization
Author: Chi-hau Chen
Publisher: World Scientific
ISBN: 9812704094
Category : Medical
Languages : en
Pages : 682
Book Description
Ultrasonic methods have been very popular in nondestructive testing and characterization of materials. This book deals with both industrial ultrasound and medical ultrasound. The advantages of ultrasound include flexibility, low cost, in-line operation, and providing data in both signal and image formats for further analysis. The book devotes 11 chapters to ultrasonic methods. However, ultrasonic methods can be much less effective with some applications. So the book also has 14 chapters catering to other or advanced methods for nondestructive testing or material characterization. Topics like structural health monitoring, Terahertz methods, X-ray and thermography methods are presented. Besides different sensors for nondestructive testing, the book places much emphasis on signal/image processing and pattern recognition of the signals acquired.
Publisher: World Scientific
ISBN: 9812704094
Category : Medical
Languages : en
Pages : 682
Book Description
Ultrasonic methods have been very popular in nondestructive testing and characterization of materials. This book deals with both industrial ultrasound and medical ultrasound. The advantages of ultrasound include flexibility, low cost, in-line operation, and providing data in both signal and image formats for further analysis. The book devotes 11 chapters to ultrasonic methods. However, ultrasonic methods can be much less effective with some applications. So the book also has 14 chapters catering to other or advanced methods for nondestructive testing or material characterization. Topics like structural health monitoring, Terahertz methods, X-ray and thermography methods are presented. Besides different sensors for nondestructive testing, the book places much emphasis on signal/image processing and pattern recognition of the signals acquired.
Nondestructive Materials Characterization
Author: Norbert G. H. Meyendorf
Publisher: Springer Science & Business Media
ISBN: 3662089882
Category : Science
Languages : en
Pages : 435
Book Description
With an emphasis on aircraft materials, this book describes techniques for the material characterization to detect and quantify degradation processes such as corrosion and fatigue. It introduces readers to these techniques based on x-ray, ultrasonic, optical and thermal principles and demonstrates the potential of the techniques for a wide variety of applications concerning aircraft materials, especially aluminum and titanium alloys. The advantages and disadvantages of various techniques are evaluated.
Publisher: Springer Science & Business Media
ISBN: 3662089882
Category : Science
Languages : en
Pages : 435
Book Description
With an emphasis on aircraft materials, this book describes techniques for the material characterization to detect and quantify degradation processes such as corrosion and fatigue. It introduces readers to these techniques based on x-ray, ultrasonic, optical and thermal principles and demonstrates the potential of the techniques for a wide variety of applications concerning aircraft materials, especially aluminum and titanium alloys. The advantages and disadvantages of various techniques are evaluated.
Nondestructive Characterization of Materials IV
Author: J.F. Bussière
Publisher: Springer Science & Business Media
ISBN: 1489906703
Category : Technology & Engineering
Languages : en
Pages : 506
Book Description
There is a great deal of interest in extending nondestructive technologies beyond the location and identification of cracks and voids. Specifically there is growing interest in the application of nondestructive evaluation (NOEl to the measurement of physical and mechanical properties of materials. The measurement of materials properties is often referred to as materials characterization; thus nondestructive techniques applied to characterization become nondestructive characterization (NDCl. There are a number of meetings, proceedings and journals focused upon nondestructive technologies and the detection and identification of cracks and voids. However, the series of symposia, of which these proceedings represent the fourth, are the only meetings uniquely focused upon nondestructive characterization. Moreover, these symposia are especially concerned with stimulating communication between the materials, mechanical and manufacturing engineer and the NDE technology oriented engineer and scientist. These symposia recognize that it is the welding of these areas of expertise that is necessary for practical development and application of NDC technology to measurements of components for in service life time and sensor technology for intelligent processing of materials. These proceedings are from the fourth international symposia and are edited by c.o. Ruud, J. F. Bussiere and R.E. Green, Jr. . The dates, places, etc of the symposia held to date area as follows: Symposia on Nondestructive Methods for TITLE: Material Property Determination DATES: April 6-8, 1983 PLACE: Hershey, PA, USA CHAIRPERSONS: C.O. Ruud and R.E. Green, Jr.
Publisher: Springer Science & Business Media
ISBN: 1489906703
Category : Technology & Engineering
Languages : en
Pages : 506
Book Description
There is a great deal of interest in extending nondestructive technologies beyond the location and identification of cracks and voids. Specifically there is growing interest in the application of nondestructive evaluation (NOEl to the measurement of physical and mechanical properties of materials. The measurement of materials properties is often referred to as materials characterization; thus nondestructive techniques applied to characterization become nondestructive characterization (NDCl. There are a number of meetings, proceedings and journals focused upon nondestructive technologies and the detection and identification of cracks and voids. However, the series of symposia, of which these proceedings represent the fourth, are the only meetings uniquely focused upon nondestructive characterization. Moreover, these symposia are especially concerned with stimulating communication between the materials, mechanical and manufacturing engineer and the NDE technology oriented engineer and scientist. These symposia recognize that it is the welding of these areas of expertise that is necessary for practical development and application of NDC technology to measurements of components for in service life time and sensor technology for intelligent processing of materials. These proceedings are from the fourth international symposia and are edited by c.o. Ruud, J. F. Bussiere and R.E. Green, Jr. . The dates, places, etc of the symposia held to date area as follows: Symposia on Nondestructive Methods for TITLE: Material Property Determination DATES: April 6-8, 1983 PLACE: Hershey, PA, USA CHAIRPERSONS: C.O. Ruud and R.E. Green, Jr.
Nondestructive Characterization of Materials VI
Author: Robert E. Green
Publisher: Springer Science & Business Media
ISBN: 1461525748
Category : Technology & Engineering
Languages : en
Pages : 822
Book Description
Traditionally the vast majority of materials characterization techniques have been destructive, e. g. , chemical compositional analysis, metallographic determination of microstructure, tensile test measurement of mechanical properties, etc. Also, traditionally, nondestructive techniques have been used almost exclusively for the detection of macroscopic defects, mostly cracks, in structures and devices which have already been constructed and have already been in service for an extended period of time. Following these conventional nondestructive tests, it has been common practice to use somewhat arbitrary accept-reject criteria to decide whether or not the structure or device should be removed from service. The present unfavorable status of a large segment of industry, coupled with the desire to keep structures in service well past their original design life, dramatically show that our traditional approaches must be drastically modified if we are to be able to meet future needs. The role of nondestructive characterization of materials is changing and will continue to change dramatically. It has become increasingly evident that it is both practical and cost effective to expand the role of nondestructive evaluation to include all aspects of materials' production and application and to introduce it much earlier in the manufacturing cycle. In fact, the recovery of a large portion of industry from severe economic problems is dependent, in part, on the successful implementation of this expanded role.
Publisher: Springer Science & Business Media
ISBN: 1461525748
Category : Technology & Engineering
Languages : en
Pages : 822
Book Description
Traditionally the vast majority of materials characterization techniques have been destructive, e. g. , chemical compositional analysis, metallographic determination of microstructure, tensile test measurement of mechanical properties, etc. Also, traditionally, nondestructive techniques have been used almost exclusively for the detection of macroscopic defects, mostly cracks, in structures and devices which have already been constructed and have already been in service for an extended period of time. Following these conventional nondestructive tests, it has been common practice to use somewhat arbitrary accept-reject criteria to decide whether or not the structure or device should be removed from service. The present unfavorable status of a large segment of industry, coupled with the desire to keep structures in service well past their original design life, dramatically show that our traditional approaches must be drastically modified if we are to be able to meet future needs. The role of nondestructive characterization of materials is changing and will continue to change dramatically. It has become increasingly evident that it is both practical and cost effective to expand the role of nondestructive evaluation to include all aspects of materials' production and application and to introduce it much earlier in the manufacturing cycle. In fact, the recovery of a large portion of industry from severe economic problems is dependent, in part, on the successful implementation of this expanded role.
Nondestructive Characterization of Materials VIII
Author: Robert E. Green
Publisher: Springer Science & Business Media
ISBN: 1461548470
Category : Technology & Engineering
Languages : en
Pages : 828
Book Description
Different physical models for the Snoek-type relaxation in ternary systems (Fe-C-Me) are analyzed from the viewpoint of a distance of interatomic interaction taken into account: For non-saturated from the viewpoint of overlapping of interatomic interaction in b.c.c. alloys the physically sufficient and optimal for the computer simulation is the short-range model, which takes into account the interatomic interaction and the average amount of substitutional atoms in the first coordination shell, only. For high alloyed b.c.c. systems (i.e. with the overlapped interatomic interaction) the carbon atom undergoes an interaction of a few substitutional atoms simultaneously. That leads to the appearance of one broadened Snoek peak. Activation energy of such a peak is summed from the "elastic" and "chemical" interatomic interactions. Experimental results for alloys with b.c.c. solid solution structure and its computer simulations allow to introduce the new criterion for the high alloy state of monophase steels: the high alloyed state corresponds to the situation when substitutional atoms can not be considered any longer as the isolated atoms. From the viewpoint of mechanical spectroscopy this situation corresponds to the appearance of one broadened IF Snoek-type peak instead of two peaks existed for the steels with lower substitutional atom concentration.
Publisher: Springer Science & Business Media
ISBN: 1461548470
Category : Technology & Engineering
Languages : en
Pages : 828
Book Description
Different physical models for the Snoek-type relaxation in ternary systems (Fe-C-Me) are analyzed from the viewpoint of a distance of interatomic interaction taken into account: For non-saturated from the viewpoint of overlapping of interatomic interaction in b.c.c. alloys the physically sufficient and optimal for the computer simulation is the short-range model, which takes into account the interatomic interaction and the average amount of substitutional atoms in the first coordination shell, only. For high alloyed b.c.c. systems (i.e. with the overlapped interatomic interaction) the carbon atom undergoes an interaction of a few substitutional atoms simultaneously. That leads to the appearance of one broadened Snoek peak. Activation energy of such a peak is summed from the "elastic" and "chemical" interatomic interactions. Experimental results for alloys with b.c.c. solid solution structure and its computer simulations allow to introduce the new criterion for the high alloy state of monophase steels: the high alloyed state corresponds to the situation when substitutional atoms can not be considered any longer as the isolated atoms. From the viewpoint of mechanical spectroscopy this situation corresponds to the appearance of one broadened IF Snoek-type peak instead of two peaks existed for the steels with lower substitutional atom concentration.
Nondestructive Characterization of Materials X
Author: R.E. Green
Publisher: Elsevier
ISBN: 0080552102
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
The papers published in these peer-reviewed proceedings represent the latest developments in nondestructive characterization of materials and were presented at the Tenth International Symposium on Nondestructive Characterization of Materials held on June 26 - 30, 2000 in Karuizawa, Japan. The symposium was held concurrently with three other symposia and one workshop. This symposium is the tenth in the series that began in 1983 and became an international meeting in 1986.The symposium started with a Plenary Lecture entitled 'Application of Non-contact Ultrasonics to Nondestrctive Characterization of Materials' by Professor R.E. Green, Jr. Various characterization methods were presented at the symposium, including ultrasonics, X-ray, eddy currents, laser, thermal wave, acoustic emission, optical fibers, optics, magnetics and ultrasonic microscope. Thin films and coatings as well as smart materials were also emphasized in this symposium.
Publisher: Elsevier
ISBN: 0080552102
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
The papers published in these peer-reviewed proceedings represent the latest developments in nondestructive characterization of materials and were presented at the Tenth International Symposium on Nondestructive Characterization of Materials held on June 26 - 30, 2000 in Karuizawa, Japan. The symposium was held concurrently with three other symposia and one workshop. This symposium is the tenth in the series that began in 1983 and became an international meeting in 1986.The symposium started with a Plenary Lecture entitled 'Application of Non-contact Ultrasonics to Nondestrctive Characterization of Materials' by Professor R.E. Green, Jr. Various characterization methods were presented at the symposium, including ultrasonics, X-ray, eddy currents, laser, thermal wave, acoustic emission, optical fibers, optics, magnetics and ultrasonic microscope. Thin films and coatings as well as smart materials were also emphasized in this symposium.
Nondestructive Characterization and Imaging of Wood
Author: Voichita Bucur
Publisher: Springer Science & Business Media
ISBN: 9783540438403
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
This book on the Nondestructive Characterization and Imaging of Wood by Professor Voichita Bucur is truly the most outstanding reference on the subject ever written. Since the origins of mankind, wood has played a key role in the history of humans and other living creatures, ranging from provision of life from trees giving air, heat, light, and food to nourish their bodies to structures to protect them from the elements. Wood has also played a key role in one of the world's primary religions. Nondestructive diagnostics methods have long found application in medi cal practice for examination of the human body in order to detect life threatening abnormalities and permit diagnosis to extend life. Nondestructive testing has been used for many years to insure the safety of machinery, air craft, railroads, tunnels, buildings and many other structures. Therefore, it is timely for a treatise, like the present one, to be written describing how wood can be characterized without employing destructive test methods. Since wood is so valuable to mankind, it is important to know the latest methods to nondestructively characterize wood for all practical applications.
Publisher: Springer Science & Business Media
ISBN: 9783540438403
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
This book on the Nondestructive Characterization and Imaging of Wood by Professor Voichita Bucur is truly the most outstanding reference on the subject ever written. Since the origins of mankind, wood has played a key role in the history of humans and other living creatures, ranging from provision of life from trees giving air, heat, light, and food to nourish their bodies to structures to protect them from the elements. Wood has also played a key role in one of the world's primary religions. Nondestructive diagnostics methods have long found application in medi cal practice for examination of the human body in order to detect life threatening abnormalities and permit diagnosis to extend life. Nondestructive testing has been used for many years to insure the safety of machinery, air craft, railroads, tunnels, buildings and many other structures. Therefore, it is timely for a treatise, like the present one, to be written describing how wood can be characterized without employing destructive test methods. Since wood is so valuable to mankind, it is important to know the latest methods to nondestructively characterize wood for all practical applications.