Non-thermal Aftertreatment of Particulates PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Non-thermal Aftertreatment of Particulates PDF full book. Access full book title Non-thermal Aftertreatment of Particulates by . Download full books in PDF and EPUB format.

Non-thermal Aftertreatment of Particulates

Non-thermal Aftertreatment of Particulates PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Book Description
Modern diesel passenger vehicles employing common rail, high speed direct injection engines are capable of matching the drivability of gasoline powered vehicles with the additional benefit of providing high torque at low engine speed [1]. The diesel engine also offers considerable fuel economy and CO2 emissions advantages. However, future emissions standards [2,3] present a significant challenge for the diesel engine, as its lean exhaust precludes the use of aftertreatment strategies employing 3- way catalytic converters, which operate under stoichiometric conditions. In recent years significant developments by diesel engine manufacturers have greatly reduced emissions of both particulates (PM) and oxides of nitrogen (NOx) [4,5]. However to achieve compliance with future legislative limits it has been suggested that an integrated approach involving a combination of engine modifications and aftertreatment technology [1] will be required. A relatively new approach to exhaust aftertreatment is the application of non-thermal plasma (NTP) or plasma catalyst hybrid systems. These have the potential for treatment of both NOx and PM emissions [6- 8]. The primary focus of recent plasma aftertreatment studies [9-12] has concentrated on the removal of NOx. It has been shown that by combining plasmas with catalysts it is possible to chemically reduce NOx. The most common approach is to use a 2- stage system relying upon the plasma oxidation of hydrocarbons to promote NO to NO2 conversion as a precursor to NO2 reduction over a catalyst. However, relatively little work has yet been published on the oxidation of PM by plasma [8,13]. Previous investigations [8] have reported that a suitably designed NTP reactor containing a packing material designed to filter and retain PM can effect the oxidation of PM in diesel exhausts at low temperatures. It has been suggested that the retained PM competes with hydrocarbons for O, and possibly OH, radicals. This is an important consideration in plasma - catalyst hybrid schemes for the removal of NOx employing an NO2 selective catalyst, as the oxidation of PM may deplete the key radicals necessary for NO to NO2 conversion. It was also suggested that where simultaneous NOx and PM removal are required, alternative catalyst formulations may be needed which may be selective to NO rather than NO2.

Non-thermal Aftertreatment of Particulates

Non-thermal Aftertreatment of Particulates PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Book Description
Modern diesel passenger vehicles employing common rail, high speed direct injection engines are capable of matching the drivability of gasoline powered vehicles with the additional benefit of providing high torque at low engine speed [1]. The diesel engine also offers considerable fuel economy and CO2 emissions advantages. However, future emissions standards [2,3] present a significant challenge for the diesel engine, as its lean exhaust precludes the use of aftertreatment strategies employing 3- way catalytic converters, which operate under stoichiometric conditions. In recent years significant developments by diesel engine manufacturers have greatly reduced emissions of both particulates (PM) and oxides of nitrogen (NOx) [4,5]. However to achieve compliance with future legislative limits it has been suggested that an integrated approach involving a combination of engine modifications and aftertreatment technology [1] will be required. A relatively new approach to exhaust aftertreatment is the application of non-thermal plasma (NTP) or plasma catalyst hybrid systems. These have the potential for treatment of both NOx and PM emissions [6- 8]. The primary focus of recent plasma aftertreatment studies [9-12] has concentrated on the removal of NOx. It has been shown that by combining plasmas with catalysts it is possible to chemically reduce NOx. The most common approach is to use a 2- stage system relying upon the plasma oxidation of hydrocarbons to promote NO to NO2 conversion as a precursor to NO2 reduction over a catalyst. However, relatively little work has yet been published on the oxidation of PM by plasma [8,13]. Previous investigations [8] have reported that a suitably designed NTP reactor containing a packing material designed to filter and retain PM can effect the oxidation of PM in diesel exhausts at low temperatures. It has been suggested that the retained PM competes with hydrocarbons for O, and possibly OH, radicals. This is an important consideration in plasma - catalyst hybrid schemes for the removal of NOx employing an NO2 selective catalyst, as the oxidation of PM may deplete the key radicals necessary for NO to NO2 conversion. It was also suggested that where simultaneous NOx and PM removal are required, alternative catalyst formulations may be needed which may be selective to NO rather than NO2.

Non-thermal Plasma Based Technologies for the After-treatment of Automotive Exhaust Particulates and Marine Diesel Exhaust NOx

Non-thermal Plasma Based Technologies for the After-treatment of Automotive Exhaust Particulates and Marine Diesel Exhaust NOx PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

Modeling of a Diesel Particulate Emissions Aftertreatment System Using Non-thermal Plasma

Modeling of a Diesel Particulate Emissions Aftertreatment System Using Non-thermal Plasma PDF Author: Cheng Chen
Publisher:
ISBN:
Category : Atmospheric electricity
Languages : en
Pages : 242

Book Description
"There is a growing demand for energy usage in the world, primarily due to increasing economic activity. This need can be met by pursuing increased power generation. However the impact of emissions from power generation sources on the health of human beings and environmental continues to be a major concern. In order to maintain and enhance environmental quality there is a need for the development of clean energy products. A diesel aftertreatment device was developed at RIT to reduce particulate matter (PM) in the emissions of generators and diesel engines by using the combination of non-thermal plasma oxidation and emission catalyst technologies. The non-thermal plasma (corona discharge) created by a high voltage electrode produces ionized gas or plasma in the charging section of the device. Simultaneously gas atoms are excited, producing highly reactive O, OH, and NO2 radicals. These radicals oxidize PM to gaseous products including CO, and CO2. The device has a low pressure drop compared with other diesel aftertreatment devices since it self-regenerates and there is no accumulation of PM in the system. The scope of this thesis is to develop a numerical model to simulate the performance of this diesel aftertreatment device. The model calculates the diesel exhaust conditions, plasma generation condition, electric field, power consumption, particulate collection, and particle removal. The model results agree with the experimental data, which proves that the model can be used for system performance prediction. Based on keeping the same PM removal efficiency and back pressure effects on diesel engine, a method was developed for system scale-up or scale-down"--Abstract.

Diesel Particulate Emissions Landmark Research 1994-2001

Diesel Particulate Emissions Landmark Research 1994-2001 PDF Author: John H Johnson
Publisher: SAE International
ISBN: 1468600117
Category : Technology & Engineering
Languages : en
Pages : 636

Book Description
The need for manufacturers to meet U.S. Environmental Protection Agency (EPA) mobile source diesel emissions standards for on-highway light duty and heavy duty vehicles has been the driving force for the control of diesel particulate and NOx emissions reductions. Diesel Particulate Emissions: Landmark Research 1994-2001 contains the latest research and development findings that will help guide engineers to achieve low particulate emissions from future engines. Based on extensive SAE literature from the past seven years, the 45 papers in this book have been selected from the SAE Transactions Journals.

Advanced Physicochemical Treatment Technologies

Advanced Physicochemical Treatment Technologies PDF Author: Lawrence K. Wang
Publisher: Springer Science & Business Media
ISBN: 1597451738
Category : Technology & Engineering
Languages : en
Pages : 720

Book Description
In Advanced Physiochemical Treatment Technologies, leading pollution control educators and practicing professionals describe how various combinations of different cutting-edge process systems can be arranged to solve air, noise, and thermal pollution problems. Each chapter discusses in detail the three basic forms in which pollutants and waste are manifested: gas, solid, and liquid. There is an extensive collection of design examples and case histories.

Low Temperature Plasma Technology

Low Temperature Plasma Technology PDF Author: Paul K. Chu
Publisher: CRC Press
ISBN: 1466509902
Category : Science
Languages : en
Pages : 497

Book Description
Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induced fluorescence measurement, and explores the increasing research on atmospheric pressure nonequilibrium plasma jets. The authors also discuss how low temperature plasmas are used in the synthesis of nanomaterials, environmental applications, the treatment of biomaterials, and plasma medicine. This book provides a balanced and thorough treatment of the core principles, novel technology and diagnostics, and state-of-the-art applications of low temperature plasmas. It is accessible to scientists and graduate students in low-pressure plasma physics, nanotechnology, plasma medicine, and materials science. The book is also suitable as an advanced reference for senior undergraduate students.

Particle Filter Retrofit for All Diesel Engines

Particle Filter Retrofit for All Diesel Engines PDF Author: Andreas Mayer
Publisher: expert verlag
ISBN: 9783816928508
Category : Diesel motor
Languages : en
Pages : 462

Book Description


Catalytic Air Pollution Control

Catalytic Air Pollution Control PDF Author: Ronald M. Heck
Publisher: John Wiley & Sons
ISBN: 0470275030
Category : Science
Languages : en
Pages : 548

Book Description
Catalytic Air Pollution Control: Commercial Technology is the primary source for commercial catalytic air pollution control technology, offering engineers a comprehensive account of all modern catalytic technology. This Third Edition covers all the new advances in technology in automotive catalyst control technology, diesel engine catalyst control technology, small engine catalyst control technology, and alternate sustainable fuels for auto and diesel.

Modern Engine Technology

Modern Engine Technology PDF Author: Richard Van Basshuysen
Publisher: SAE International
ISBN: 076801705X
Category : Technology & Engineering
Languages : en
Pages : 1071

Book Description
Part dictionary, part encyclopedia, Modern Engine Technology from A to Z will serve as your comprehensive reference guide for many years to come. Keywords throughout the text are in alphabetical order and highlighted in blue to make them easier to find, followed, where relevant, by subentries extending to as many as four sublevels. Full-color illustrations provide additional visual explanation to the reader. This book features: approximately 4,500 keywords, with detailed cross-references more than 1,700 illustrations, some in full color in-depth contributions from nearly 100 experts from industry and science engine development, both theory and practice

Nonthermal Aftertreatment of Diesel Engine Exhaust

Nonthermal Aftertreatment of Diesel Engine Exhaust PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Book Description
The ultimate objective of this work has been to develop a nonthermal plasma process to reduce NO(subscript x) in diesel exhaust gas. A secondary objective has been to study the possibility of particulate matter (soot) reduction by the same technique. The early work revealed a fundamental difficulty with this NO(subscript x) reduction approach in the gas environment of the diesel engine exhaust. These observations necessitated a thorough study of the unfavorable chemistry in the hope that knowledge of the chemical mechanism would offer an opportunity to make the approach useful for NO(subscript x) reduction. Whereas fundamental understanding of the mechanism has been obtained, the authors have not found any measure that would make the approach meet its original objective.