New Trends in Nanotechnology and Fractional Calculus Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download New Trends in Nanotechnology and Fractional Calculus Applications PDF full book. Access full book title New Trends in Nanotechnology and Fractional Calculus Applications by Dumitru Baleanu. Download full books in PDF and EPUB format.

New Trends in Nanotechnology and Fractional Calculus Applications

New Trends in Nanotechnology and Fractional Calculus Applications PDF Author: Dumitru Baleanu
Publisher: Springer Science & Business Media
ISBN: 9048132932
Category : Technology & Engineering
Languages : en
Pages : 518

Book Description
In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians.

New Trends in Nanotechnology and Fractional Calculus Applications

New Trends in Nanotechnology and Fractional Calculus Applications PDF Author: Dumitru Baleanu
Publisher: Springer Science & Business Media
ISBN: 9048132932
Category : Technology & Engineering
Languages : en
Pages : 518

Book Description
In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians.

Fractional Calculus in Medical and Health Science

Fractional Calculus in Medical and Health Science PDF Author: Devendra Kumar
Publisher: CRC Press
ISBN: 1000081850
Category : Technology & Engineering
Languages : en
Pages : 153

Book Description
This book covers applications of fractional calculus used for medical and health science. It offers a collection of research articles built into chapters on classical and modern dynamical systems formulated by fractional differential equations describing human diseases and how to control them. The mathematical results included in the book will be helpful to mathematicians and doctors by enabling them to explain real-life problems accurately. The book will also offer case studies of real-life situations with an emphasis on describing the mathematical results and showing how to apply the results to medical and health science, and at the same time highlighting modeling strategies. The book will be useful to graduate level students, educators and researchers interested in mathematics and medical science.

Fractional Calculus: Models And Numerical Methods

Fractional Calculus: Models And Numerical Methods PDF Author: Dumitru Baleanu
Publisher: World Scientific
ISBN: 9814458635
Category : Mathematics
Languages : en
Pages : 426

Book Description
The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives of elementary functions, and so on.This book will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods. Moreover, we will introduce some applied topics, in particular fractional variational methods which are used in physics, engineering or economics. We will also discuss the relationship between semi-Markov continuous-time random walks and the space-time fractional diffusion equation, which generalizes the usual theory relating random walks to the diffusion equation. These methods can be applied in finance, to model tick-by-tick (log)-price fluctuations, in insurance theory, to study ruin, as well as in macroeconomics as prototypical growth models.All these topics are complementary to what is dealt with in existing books on fractional calculus and its applications. This book was written with a trade-off in mind between full mathematical rigor and the needs of readers coming from different applied areas of science and engineering. In particular, the numerical methods listed in the book are presented in a readily accessible way that immediately allows the readers to implement them on a computer in a programming language of their choice. Numerical code is also provided.

Handbook of Fractional Calculus for Engineering and Science

Handbook of Fractional Calculus for Engineering and Science PDF Author: Harendra Singh
Publisher: CRC Press
ISBN: 1000540081
Category : Mathematics
Languages : en
Pages : 318

Book Description
Fractional calculus is used to model many real-life situations from science and engineering. The book includes different topics associated with such equations and their relevance and significance in various scientific areas of study and research. In this book readers will find several important and useful methods and techniques for solving various types of fractional-order models in science and engineering. The book should be useful for graduate students, PhD students, researchers and educators interested in mathematical modelling, physical sciences, engineering sciences, applied mathematical sciences, applied sciences, and so on. This Handbook: Provides reliable methods for solving fractional-order models in science and engineering. Contains efficient numerical methods and algorithms for engineering-related equations. Contains comparison of various methods for accuracy and validity. Demonstrates the applicability of fractional calculus in science and engineering. Examines qualitative as well as quantitative properties of solutions of various types of science- and engineering-related equations. Readers will find this book to be useful and valuable in increasing and updating their knowledge in this field and will be it will be helpful for engineers, mathematicians, scientist and researchers working on various real-life problems.

Theoretical Developments and Applications of Non-Integer Order Systems

Theoretical Developments and Applications of Non-Integer Order Systems PDF Author: Stefan Domek
Publisher: Springer
ISBN: 3319230395
Category : Technology & Engineering
Languages : en
Pages : 294

Book Description
This volume is devoted to presentation of new results of research on systems of non-integer order, called also fractional systems. Their analysis and practical implementation have been the object of spontaneous development for a few last decades. The fractional order models can depict a physical plant better than the classical integer order ones. This covers different research fields such as insulator properties, visco-elastic materials, electrodynamic, electrothermal, electrochemical, economic processes modelling etc. On the other hand fractional controllers often outperform their integer order counterparts. This volume contains new ideas and examples of implementation, theoretical and pure practical aspects of using a non-integer order calculus. It is divided into four parts covering: mathematical fundamentals, modeling and approximations, controllability, observability and stability problems and practical applications of fractional control systems. The first part expands the base of tools and methods of the mathematical basis for non-integer order calculus. Part two focuses on new methods and developments in process modeling and fractional derivatives approximations. In the third part a bunch of papers which raise problems of controllability, observability and stability of non-integer order systems is provided. Part four is devoted to presentation of different fractional order control applications. This book was created thanks to many experts in the field of fractional calculus: authors, anonymous referees whose comments allowed us to improve the final form of the papers and active and inspiring discussion of the participants of RRNR'2015, the 7th Conference on Non-Integer Order Calculus and Its Applications that was organized by the Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin, Poland.

Fractional Order Signal Processing

Fractional Order Signal Processing PDF Author: Saptarshi Das
Publisher: Springer Science & Business Media
ISBN: 3642231179
Category : Technology & Engineering
Languages : en
Pages : 110

Book Description
The book tries to briefly introduce the diverse literatures in the field of fractional order signal processing which is becoming an emerging topic among an interdisciplinary community of researchers. This book is aimed at postgraduate and beginning level research scholars who would like to work in the field of Fractional Order Signal processing (FOSP). The readers should have preliminary knowledge about basic signal processing techniques. Prerequisite knowledge of fractional calculus is not essential and is exposited at relevant places in connection to the appropriate signal processing topics. Basic signal processing techniques like filtering, estimation, system identification, etc. in the light of fractional order calculus are presented along with relevant application areas. The readers can easily extend these concepts to varied disciplines like image or speech processing, pattern recognition, time series forecasting, financial data analysis and modeling, traffic modeling in communication channels, optics, biomedical signal processing, electrochemical applications and many more. Adequate references are provided in each category so that the researchers can delve deeper into each area and broaden their horizon of understanding. Available MATLAB tools to simulate FOSP theories are also introduced so that the readers can apply the theoretical concepts right-away and gain practical insight in the specific domain.

Mathematics Without Boundaries

Mathematics Without Boundaries PDF Author: Themistocles M. Rassias
Publisher: Springer
ISBN: 1493911066
Category : Mathematics
Languages : en
Pages : 783

Book Description
The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the latest information.

Fractional Calculus: Models And Numerical Methods (Second Edition)

Fractional Calculus: Models And Numerical Methods (Second Edition) PDF Author: Juan J Trujillo
Publisher: World Scientific
ISBN: 9813140054
Category : Mathematics
Languages : en
Pages : 477

Book Description
This book will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods. Moreover, we will introduce some applied topics, in particular fractional variational methods which are used in physics, engineering or economics. We will also discuss the relationship between semi-Markov continuous-time random walks and the space-time fractional diffusion equation, which generalizes the usual theory relating random walks to the diffusion equation. These methods can be applied in finance, to model tick-by-tick (log)-price fluctuations, in insurance theory, to study ruin, as well as in macroeconomics as prototypical growth models.All these topics are complementary to what is dealt with in existing books on fractional calculus and its applications. This book will keep in mind the trade-off between full mathematical rigor and the needs of readers coming from different applied areas of science and engineering. In particular, the numerical methods listed in the book are presented in a readily accessible way that immediately allows the readers to implement them on a computer in a programming language of their choice.The second edition of the book has been expanded and now includes a discussion of additional, newly developed numerical methods for fractional calculus and a chapter on the application of fractional calculus for modeling processes in the life sciences.

Advances in the Theory and Applications of Non-integer Order Systems

Advances in the Theory and Applications of Non-integer Order Systems PDF Author: Wojciech Mitkowski
Publisher: Springer Science & Business Media
ISBN: 3319009338
Category : Technology & Engineering
Languages : en
Pages : 316

Book Description
This volume presents various aspects of non-integer order systems, also known as fractional systems, which have recently attracted an increasing attention in the scientific community of systems science, applied mathematics, control theory. Non-integer systems have become relevant for many fields of science and technology exemplified by the modeling of signal transmission, electric noise, dielectric polarization, heat transfer, electrochemical reactions, thermal processes, acoustics, etc. The content is divided into six parts, every of which considers one of the currently relevant problems. In the first part the Realization problem is discussed, with a special focus on positive systems. The second part considers stability of certain classes of non-integer order systems with and without delays. The third part is focused on such important aspects as controllability, observability and optimization especially in discrete time. The fourth part is focused on distributed systems where non-integer calculus leads to new and interesting results. The next part considers problems of solutions and approximations of non-integer order equations and systems. The final and most extensive part is devoted to applications. Problems from mechatronics, biomedical engineering, robotics and others are all analyzed and solved with tools from fractional systems. This volume came to fruition thanks to high level of talks and interesting discussions at RRNR 2013 - 5th Conference on Non-integer Order Calculus and its Applications that took place at AGH University of Science and Technology in Kraków, Poland, which was organized by the Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering.

Fractional Differential Equations

Fractional Differential Equations PDF Author: Mouffak Benchohra
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111334384
Category : Technology & Engineering
Languages : en
Pages : 336

Book Description
This book is devoted to the existence and uniqueness results for various classes of problems with periodic conditions. All of the problems in this book deal with fractional differential equations and some fractional derivatives such as the Riemann-Liouville, Caputo and Hilfer fractional derivatives. Classical fixed point theorems as well as the coincidence degree theory of Mawhin are employed as tools.