Author: William W. Hager
Publisher: Springer Science & Business Media
ISBN: 038729550X
Category : Mathematics
Languages : en
Pages : 416
Book Description
As optimization researchers tackle larger and larger problems, scale interactions play an increasingly important role. One general strategy for dealing with a large or difficult problem is to partition it into smaller ones, which are hopefully much easier to solve, and then work backwards towards the solution of original problem, using a solution from a previous level as a starting guess at the next level. This volume contains 22 chapters highlighting some recent research. The topics of the chapters selected for this volume are focused on the development of new solution methodologies, including general multilevel solution techniques, for tackling difficult, large-scale optimization problems that arise in science and industry. Applications presented in the book include but are not limited to the circuit placement problem in VLSI design, a wireless sensor location problem, optimal dosages in the treatment of cancer by radiation therapy, and facility location.
Multiscale Optimization Methods and Applications
Author: William W. Hager
Publisher: Springer Science & Business Media
ISBN: 038729550X
Category : Mathematics
Languages : en
Pages : 416
Book Description
As optimization researchers tackle larger and larger problems, scale interactions play an increasingly important role. One general strategy for dealing with a large or difficult problem is to partition it into smaller ones, which are hopefully much easier to solve, and then work backwards towards the solution of original problem, using a solution from a previous level as a starting guess at the next level. This volume contains 22 chapters highlighting some recent research. The topics of the chapters selected for this volume are focused on the development of new solution methodologies, including general multilevel solution techniques, for tackling difficult, large-scale optimization problems that arise in science and industry. Applications presented in the book include but are not limited to the circuit placement problem in VLSI design, a wireless sensor location problem, optimal dosages in the treatment of cancer by radiation therapy, and facility location.
Publisher: Springer Science & Business Media
ISBN: 038729550X
Category : Mathematics
Languages : en
Pages : 416
Book Description
As optimization researchers tackle larger and larger problems, scale interactions play an increasingly important role. One general strategy for dealing with a large or difficult problem is to partition it into smaller ones, which are hopefully much easier to solve, and then work backwards towards the solution of original problem, using a solution from a previous level as a starting guess at the next level. This volume contains 22 chapters highlighting some recent research. The topics of the chapters selected for this volume are focused on the development of new solution methodologies, including general multilevel solution techniques, for tackling difficult, large-scale optimization problems that arise in science and industry. Applications presented in the book include but are not limited to the circuit placement problem in VLSI design, a wireless sensor location problem, optimal dosages in the treatment of cancer by radiation therapy, and facility location.
Multiscale Structural Topology Optimization
Author: Liang Xia
Publisher: Elsevier
ISBN: 0081011865
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
Multiscale Structural Topology Optimization discusses the development of a multiscale design framework for topology optimization of multiscale nonlinear structures. With the intention to alleviate the heavy computational burden of the design framework, the authors present a POD-based adaptive surrogate model for the RVE solutions at the microscopic scale and make a step further towards the design of multiscale elastoviscoplastic structures. Various optimization methods for structural size, shape, and topology designs have been developed and widely employed in engineering applications. Topology optimization has been recognized as one of the most effective tools for least weight and performance design, especially in aeronautics and aerospace engineering. This book focuses on the simultaneous design of both macroscopic structure and microscopic materials. In this model, the material microstructures are optimized in response to the macroscopic solution, which results in the nonlinearity of the equilibrium problem of the interface of the two scales. The authors include a reduce database model from a set of numerical experiments in the space of effective strain. - Presents the first attempts towards topology optimization design of nonlinear highly heterogeneous structures - Helps with simultaneous design of the topologies of both macroscopic structure and microscopic materials - Helps with development of computer codes for the designs of nonlinear structures and of materials with extreme constitutive properties - Focuses on the simultaneous design of both macroscopic structure and microscopic materials - Includes a reduce database model from a set of numerical experiments in the space of effective strain
Publisher: Elsevier
ISBN: 0081011865
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
Multiscale Structural Topology Optimization discusses the development of a multiscale design framework for topology optimization of multiscale nonlinear structures. With the intention to alleviate the heavy computational burden of the design framework, the authors present a POD-based adaptive surrogate model for the RVE solutions at the microscopic scale and make a step further towards the design of multiscale elastoviscoplastic structures. Various optimization methods for structural size, shape, and topology designs have been developed and widely employed in engineering applications. Topology optimization has been recognized as one of the most effective tools for least weight and performance design, especially in aeronautics and aerospace engineering. This book focuses on the simultaneous design of both macroscopic structure and microscopic materials. In this model, the material microstructures are optimized in response to the macroscopic solution, which results in the nonlinearity of the equilibrium problem of the interface of the two scales. The authors include a reduce database model from a set of numerical experiments in the space of effective strain. - Presents the first attempts towards topology optimization design of nonlinear highly heterogeneous structures - Helps with simultaneous design of the topologies of both macroscopic structure and microscopic materials - Helps with development of computer codes for the designs of nonlinear structures and of materials with extreme constitutive properties - Focuses on the simultaneous design of both macroscopic structure and microscopic materials - Includes a reduce database model from a set of numerical experiments in the space of effective strain
Practical Multiscaling
Author: Jacob Fish
Publisher: John Wiley & Sons
ISBN: 1118534859
Category : Science
Languages : en
Pages : 420
Book Description
Practical Multiscaling covers fundamental modelling techniques aimed at bridging diverse temporal and spatial scales ranging from the atomic level to a full-scale product level. It focuses on practical multiscale methods that account for fine-scale (material) details but do not require their precise resolution. The text material evolved from over 20 years of teaching experience at Rensselaer and Columbia University, as well as from practical experience gained in the application of multiscale software. This book comprehensively covers theory and implementation, providing a detailed exposition of the state-of-the-art multiscale theories and their insertion into conventional (single-scale) finite element code architecture. The robustness and design aspects of multiscale methods are also emphasised, which is accomplished via four building blocks: upscaling of information, systematic reduction of information, characterization of information utilizing experimental data, and material optimization. To ensure the reader gains hands-on experience, a companion website hosting a lite version of the multiscale design software (MDS-Lite) is available. Key features: Combines fundamental theory and practical methods of multiscale modelling Covers the state-of-the-art multiscale theories and examines their practical usability in design Covers applications of multiscale methods Accompanied by a continuously updated website hosting the multiscale design software Illustrated with colour images Practical Multiscaling is an ideal textbook for graduate students studying multiscale science and engineering. It is also a must-have reference for government laboratories, researchers and practitioners in civil, aerospace, pharmaceutical, electronics, and automotive industries, and commercial software vendors.
Publisher: John Wiley & Sons
ISBN: 1118534859
Category : Science
Languages : en
Pages : 420
Book Description
Practical Multiscaling covers fundamental modelling techniques aimed at bridging diverse temporal and spatial scales ranging from the atomic level to a full-scale product level. It focuses on practical multiscale methods that account for fine-scale (material) details but do not require their precise resolution. The text material evolved from over 20 years of teaching experience at Rensselaer and Columbia University, as well as from practical experience gained in the application of multiscale software. This book comprehensively covers theory and implementation, providing a detailed exposition of the state-of-the-art multiscale theories and their insertion into conventional (single-scale) finite element code architecture. The robustness and design aspects of multiscale methods are also emphasised, which is accomplished via four building blocks: upscaling of information, systematic reduction of information, characterization of information utilizing experimental data, and material optimization. To ensure the reader gains hands-on experience, a companion website hosting a lite version of the multiscale design software (MDS-Lite) is available. Key features: Combines fundamental theory and practical methods of multiscale modelling Covers the state-of-the-art multiscale theories and examines their practical usability in design Covers applications of multiscale methods Accompanied by a continuously updated website hosting the multiscale design software Illustrated with colour images Practical Multiscaling is an ideal textbook for graduate students studying multiscale science and engineering. It is also a must-have reference for government laboratories, researchers and practitioners in civil, aerospace, pharmaceutical, electronics, and automotive industries, and commercial software vendors.
Computational Multiscale Modeling of Fluids and Solids
Author: Martin Oliver Steinhauser
Publisher: Springer Science & Business Media
ISBN: 3540751173
Category : Science
Languages : en
Pages : 432
Book Description
Devastatingly simple, yet hugely effective, the concept of this timely text is to provide a comprehensive overview of computational physics methods and techniques used for materials modeling on different length and time scales. Each chapter first provides an overview of the physical basic principles which are the basis for the numerical and mathematical modeling on the respective length scale. The book includes the micro scale, the meso-scale and the macro scale.
Publisher: Springer Science & Business Media
ISBN: 3540751173
Category : Science
Languages : en
Pages : 432
Book Description
Devastatingly simple, yet hugely effective, the concept of this timely text is to provide a comprehensive overview of computational physics methods and techniques used for materials modeling on different length and time scales. Each chapter first provides an overview of the physical basic principles which are the basis for the numerical and mathematical modeling on the respective length scale. The book includes the micro scale, the meso-scale and the macro scale.
EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization
Author: H.C. Rodrigues
Publisher: Springer
ISBN: 3319977733
Category : Technology & Engineering
Languages : en
Pages : 1486
Book Description
The papers in this volume focus on the following topics: design optimization and inverse problems, numerical optimization techniques,efficient analysis and reanalysis techniques, sensitivity analysis and industrial applications. The conference EngOpt brings together engineers, applied mathematicians and computer scientists working on research, development and practical application of optimization methods in all engineering disciplines and applied sciences.
Publisher: Springer
ISBN: 3319977733
Category : Technology & Engineering
Languages : en
Pages : 1486
Book Description
The papers in this volume focus on the following topics: design optimization and inverse problems, numerical optimization techniques,efficient analysis and reanalysis techniques, sensitivity analysis and industrial applications. The conference EngOpt brings together engineers, applied mathematicians and computer scientists working on research, development and practical application of optimization methods in all engineering disciplines and applied sciences.
Optimization
Author: Rajesh Kumar Arora
Publisher: CRC Press
ISBN: 149872115X
Category : Business & Economics
Languages : en
Pages : 454
Book Description
Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and co
Publisher: CRC Press
ISBN: 149872115X
Category : Business & Economics
Languages : en
Pages : 454
Book Description
Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and co
Multiscale Modelling and Optimisation of Materials and Structures
Author: Tadeusz Burczynski
Publisher: John Wiley & Sons
ISBN: 1118536452
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
Addresses the very topical, crucial and original subject of parameter identification and optimization within multiscale modeling methods Multiscale Modelling and Optimization of Materials and Structures presents an important and challenging area of research that enables the design of new materials and structures with better quality, strength and performance parameters as well as the creation of reliable models that take into account structural, material and topological properties at different scales. The authors’ approach is four-fold; 1) the basic principles of micro and nano scale modeling techniques; 2) the connection of micro and/or nano scale models with macro simulation software; 3) optimization development in the framework of multiscale engineering and the solution of identification problems; 4) the computer science techniques used in this model and advice for scientists interested in developing their own models and software for multiscale analysis and optimization. The authors present several approaches such as the bridging and homogenization methods, as well as the general formulation of complex optimization and identification problems in multiscale modelling. They apply global optimization algorithms based on robust bioinspired algorithms, proposing parallel and multi-subpopulation approaches in order to speed-up computations, and discuss several numerical examples of multiscale modeling, optimization and identification of composite and functionally graded engineering materials and bone tissues. Multiscale Modelling and Optimization of Materials and Structures is thereby a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs and implement them into simulation systems. Describes micro and nano scale models developed by the authors along with case studies of analysis and optimization Discusses the problems of computing costs, efficiency of information transfer, effective use of the computer memory and several other aspects of development of multiscale models Includes real physical, chemical and experimental studies with modern experimental techniques Provides a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs, and implement them into simulation systems.
Publisher: John Wiley & Sons
ISBN: 1118536452
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
Addresses the very topical, crucial and original subject of parameter identification and optimization within multiscale modeling methods Multiscale Modelling and Optimization of Materials and Structures presents an important and challenging area of research that enables the design of new materials and structures with better quality, strength and performance parameters as well as the creation of reliable models that take into account structural, material and topological properties at different scales. The authors’ approach is four-fold; 1) the basic principles of micro and nano scale modeling techniques; 2) the connection of micro and/or nano scale models with macro simulation software; 3) optimization development in the framework of multiscale engineering and the solution of identification problems; 4) the computer science techniques used in this model and advice for scientists interested in developing their own models and software for multiscale analysis and optimization. The authors present several approaches such as the bridging and homogenization methods, as well as the general formulation of complex optimization and identification problems in multiscale modelling. They apply global optimization algorithms based on robust bioinspired algorithms, proposing parallel and multi-subpopulation approaches in order to speed-up computations, and discuss several numerical examples of multiscale modeling, optimization and identification of composite and functionally graded engineering materials and bone tissues. Multiscale Modelling and Optimization of Materials and Structures is thereby a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs and implement them into simulation systems. Describes micro and nano scale models developed by the authors along with case studies of analysis and optimization Discusses the problems of computing costs, efficiency of information transfer, effective use of the computer memory and several other aspects of development of multiscale models Includes real physical, chemical and experimental studies with modern experimental techniques Provides a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs, and implement them into simulation systems.
Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering
Author: Kim, Dookie
Publisher: IGI Global
ISBN: 1522547673
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
The disciplines of science and engineering rely heavily on the forecasting of prospective constraints for concepts that have not yet been proven to exist, especially in areas such as artificial intelligence. Obtaining quality solutions to the problems presented becomes increasingly difficult due to the number of steps required to sift through the possible solutions, and the ability to solve such problems relies on the recognition of patterns and the categorization of data into specific sets. Predictive modeling and optimization methods allow unknown events to be categorized based on statistics and classifiers input by researchers. The Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering is a critical reference source that provides comprehensive information on the use of optimization techniques and predictive models to solve real-life engineering and science problems. Through discussions on techniques such as robust design optimization, water level prediction, and the prediction of human actions, this publication identifies solutions to developing problems and new solutions for existing problems, making this publication a valuable resource for engineers, researchers, graduate students, and other professionals.
Publisher: IGI Global
ISBN: 1522547673
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
The disciplines of science and engineering rely heavily on the forecasting of prospective constraints for concepts that have not yet been proven to exist, especially in areas such as artificial intelligence. Obtaining quality solutions to the problems presented becomes increasingly difficult due to the number of steps required to sift through the possible solutions, and the ability to solve such problems relies on the recognition of patterns and the categorization of data into specific sets. Predictive modeling and optimization methods allow unknown events to be categorized based on statistics and classifiers input by researchers. The Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering is a critical reference source that provides comprehensive information on the use of optimization techniques and predictive models to solve real-life engineering and science problems. Through discussions on techniques such as robust design optimization, water level prediction, and the prediction of human actions, this publication identifies solutions to developing problems and new solutions for existing problems, making this publication a valuable resource for engineers, researchers, graduate students, and other professionals.
Multiscale Optimization And Materials Design
Author: Jun Yan
Publisher: World Scientific
ISBN: 981121655X
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
The book presents a set of novel, efficient and systematic concurrent multiscale optimization methods by considering the distribution of the material in macro-scale and the unit-cell configuration design in micro-scale simultaneously. Different from the traditional optimization method that is performed in a single scale, the proposed methods could generate a great deal of improvements in structural performance through the multiscale structure-material concurrent optimum design.The proposed theory and methods are related to statics, dynamics, thermoelastics and the coupling of different physical fields. Therefore, it provides a comprehensive designing scheme when multiple factors are taken into account. For example, the designing scheme can have a great significance on enhancing the structural performances under coupled multi-physical fields, such as load bearing capacity, vibration resistance ability, and safety under thermal stress and so on.Several numerical examples are highlighted in this unique volume based on practical engineering applications. The examples collectively demonstrate drastically improved designs featuring excellent unit-cell configuration and highly regular macroscale material distribution in a variety of industrial applications.
Publisher: World Scientific
ISBN: 981121655X
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
The book presents a set of novel, efficient and systematic concurrent multiscale optimization methods by considering the distribution of the material in macro-scale and the unit-cell configuration design in micro-scale simultaneously. Different from the traditional optimization method that is performed in a single scale, the proposed methods could generate a great deal of improvements in structural performance through the multiscale structure-material concurrent optimum design.The proposed theory and methods are related to statics, dynamics, thermoelastics and the coupling of different physical fields. Therefore, it provides a comprehensive designing scheme when multiple factors are taken into account. For example, the designing scheme can have a great significance on enhancing the structural performances under coupled multi-physical fields, such as load bearing capacity, vibration resistance ability, and safety under thermal stress and so on.Several numerical examples are highlighted in this unique volume based on practical engineering applications. The examples collectively demonstrate drastically improved designs featuring excellent unit-cell configuration and highly regular macroscale material distribution in a variety of industrial applications.
Metaheuristics for Finding Multiple Solutions
Author: Mike Preuss
Publisher: Springer Nature
ISBN: 3030795535
Category : Computers
Languages : en
Pages : 322
Book Description
This book presents the latest trends and developments in multimodal optimization and niching techniques. Most existing optimization methods are designed for locating a single global solution. However, in real-world settings, many problems are “multimodal” by nature, i.e., multiple satisfactory solutions exist. It may be desirable to locate several such solutions before deciding which one to use. Multimodal optimization has been the subject of intense study in the field of population-based meta-heuristic algorithms, e.g., evolutionary algorithms (EAs), for the past few decades. These multimodal optimization techniques are commonly referred to as “niching” methods, because of the nature-inspired “niching” effect that is induced to the solution population targeting at multiple optima. Many niching methods have been developed in the EA community. Some classic examples include crowding, fitness sharing, clearing, derating, restricted tournament selection, speciation, etc. Nevertheless, applying these niching methods to real-world multimodal problems often encounters significant challenges. To facilitate the advance of niching methods in facing these challenges, this edited book highlights the latest developments in niching methods. The included chapters touch on algorithmic improvements and developments, representation, and visualization issues, as well as new research directions, such as preference incorporation in decision making and new application areas. This edited book is a first of this kind specifically on the topic of niching techniques. This book will serve as a valuable reference book both for researchers and practitioners. Although chapters are written in a mutually independent way, Chapter 1 will help novice readers get an overview of the field. It describes the development of the field and its current state and provides a comparative analysis of the IEEE CEC and ACM GECCO niching competitions of recent years, followed by a collection of open research questions and possible research directions that may be tackled in the future.
Publisher: Springer Nature
ISBN: 3030795535
Category : Computers
Languages : en
Pages : 322
Book Description
This book presents the latest trends and developments in multimodal optimization and niching techniques. Most existing optimization methods are designed for locating a single global solution. However, in real-world settings, many problems are “multimodal” by nature, i.e., multiple satisfactory solutions exist. It may be desirable to locate several such solutions before deciding which one to use. Multimodal optimization has been the subject of intense study in the field of population-based meta-heuristic algorithms, e.g., evolutionary algorithms (EAs), for the past few decades. These multimodal optimization techniques are commonly referred to as “niching” methods, because of the nature-inspired “niching” effect that is induced to the solution population targeting at multiple optima. Many niching methods have been developed in the EA community. Some classic examples include crowding, fitness sharing, clearing, derating, restricted tournament selection, speciation, etc. Nevertheless, applying these niching methods to real-world multimodal problems often encounters significant challenges. To facilitate the advance of niching methods in facing these challenges, this edited book highlights the latest developments in niching methods. The included chapters touch on algorithmic improvements and developments, representation, and visualization issues, as well as new research directions, such as preference incorporation in decision making and new application areas. This edited book is a first of this kind specifically on the topic of niching techniques. This book will serve as a valuable reference book both for researchers and practitioners. Although chapters are written in a mutually independent way, Chapter 1 will help novice readers get an overview of the field. It describes the development of the field and its current state and provides a comparative analysis of the IEEE CEC and ACM GECCO niching competitions of recent years, followed by a collection of open research questions and possible research directions that may be tackled in the future.