Multiple-pulse Techniques for Solid-state Nuclear Magnetic Resonance Spectroscopy of Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multiple-pulse Techniques for Solid-state Nuclear Magnetic Resonance Spectroscopy of Materials PDF full book. Access full book title Multiple-pulse Techniques for Solid-state Nuclear Magnetic Resonance Spectroscopy of Materials by Anthony D. Montina. Download full books in PDF and EPUB format.

Multiple-pulse Techniques for Solid-state Nuclear Magnetic Resonance Spectroscopy of Materials

Multiple-pulse Techniques for Solid-state Nuclear Magnetic Resonance Spectroscopy of Materials PDF Author: Anthony D. Montina
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Multiple-pulse Techniques for Solid-state Nuclear Magnetic Resonance Spectroscopy of Materials

Multiple-pulse Techniques for Solid-state Nuclear Magnetic Resonance Spectroscopy of Materials PDF Author: Anthony D. Montina
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Multiple-pulse Techniques for Solid-state Nuclear Magnetic Resonance Spectroscopy of Materials

Multiple-pulse Techniques for Solid-state Nuclear Magnetic Resonance Spectroscopy of Materials PDF Author: Tony Montina
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Solid state NMR has the ability to obtain detailed structural information at the molecular level in materials. This has led to the development of a large number of high resolution techniques, some of which utilize multiple pulse methods. The behaviour of these multiple pulse techniques has, to date, been explained using either relaxation or spin dynamics. Ultimately, an explanation based on a combination of both dynamics is required in order to properly understand the underlying mechanism of these techniques. This work presents an explanation of the experimental behaviour observed for three multiple pulse domain selection techniques: the DIVAM, Direct DIVAM, and Refocused DIVAM sequences. This is based on a combination of spin and relaxation dynamics and is accomplished using both analytical expressions and simulations obtained using a general simulation program for solid-state NMR spectroscopy (SIMPSON).

Transient Techniques in NMR of Solids

Transient Techniques in NMR of Solids PDF Author: Bernard C. Gerstein
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 320

Book Description
This volume is an ideal starting point for the graduate student seeking a basic introduction to the theory and uses of solid-state nuclear magnetic resonance (NMR) spectroscopy. Accessible to students with only a survey-level physics background, the material assumes little prior knowledge of the basic theory of electromagnetism. All the major areas are covered, including an introduction to concepts of time-dependent quantum mechanics as they apply to NMR spectroscopy of the solid state. Each chapter includes problems designed to enhance the reader's understanding of the material. Instructive and practical, this volume provides the basic knowledge needed to access the general literature and the more advanced monographs on this subject. In addition to assisting entrance into the field, Transient Techniques in NMR of Solids will be a useful guide for professionals already working in related areas of chemistry. FROM THE PREFACE: Nuclear magnetic resonance (NMR) is truly a remarkable phenomenon. Remarkable can imply different things to different people. From the point of view of a physicist, spin dynamics is an elegant example of the use of time-dependent quantum mechanics, and NMR absorption of energy is a prototype for spectroscopic transitions. From the point of view of the practicing chemist and materials scientist, NMR spectroscopy is an invaluable tool for the identification of chemical species and structures. Had NMR spectroscopic techniques commercially available in the early 1960s been the only result of investigations of this phenomenon, it would have had a major impact on the course of chemical analysis. The study of liquids and solutions for chemical shifts and couplings of protons had produced a rapid means of identifying chemical species nondestructively. The study of dynamical properties also could be addressed by study of temperature dependence of the spectra or of the saturation of the resonance by high-power irradiation. Even at that time, however, studies of the spin dynamics had already begun to indicate that there were many interesting facets of the NMR phenomenon left to exploit. For example, the Fourier-transform relationship of the free-induction decay and the absorption spectrum had been shown and the basis of the cross-polarization experiment was being investigated. A number of chemists had begun to study the spin*b1lattice relaxation times of species by pulse NMR techniques by utilizing methods that were not familiar at that time to the typical chemist but that are now commonly employed in NMR analysis. The principal characteristic of the NMR technique that makes it so useful for chemical analysis of liquids and solutions is the high resolution that allows one to observe very small interactions such as the chemical shift and the spin*b1spin coupling. These weak interactions are quite sensitive to the local environment of the spin and therefore may be used as a diagnostic for the environment. The connectivity of chemical structure is often mimicked closely in the NMR connectivity of the spectrum, and quantitative informaton is relatively easy to obtain. Nuclear magnetic resonance spectra of solids exhibit such resolution only in special cases. The primary (although not the exclusive) reason for the lack of resolution in the spectrum of a typical solid is the presence of the dipole*b1dipole interaction, which dominates the NMR spectroscopy of solids that have been of interest to chemists. One solution (no pun intended) to the problem of obtaining chemical-shift information about such solids is to dissolve them and to study them in solution. However, if the solid is insoluble or otherwise intractable or if the analysis involves questions about the properties of the substance in the solid state, then there arises a need for techniques to study the weaker interactions in the presence of the dipole*b1dipole interaction or other overwhelming interactions. This volume describes the means dev

Solid State NMR

Solid State NMR PDF Author: Klaus Müller
Publisher: John Wiley & Sons
ISBN: 3527690115
Category : Science
Languages : en
Pages : 560

Book Description
Solid State NMR A thorough and comprehensive textbook covering the theoretical background, experimental approaches, and major applications of solid-state NMR spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful non-destructive technique capable of providing information about the molecular structure and dynamics of molecules. Alongside solution-state NMR, a well-established technique to study chemical structures and investigate physico-chemical properties of molecules in solutions, solid-state NMR (SSNMR) offers many exciting possibilities for the analysis of solid and soft materials across scientific fields. SSNMR shows unique capabilities for a detailed investigation of structural and dynamic properties of materials over wide space and time ranges. For this reason, and thanks to significant advances in the past several years, the application of SSNMR to materials is rapidly increasing in disciplines such as chemistry, physics, and materials and life sciences. Solid State NMR: Principles, Methods, and Applications offers a systematic introduction to the theory, methodological concepts, and major experimental methods of SSMR spectroscopy. Exploring the unique potential of SSNMR for the structural and dynamic characterization of soft and either amorphous or crystalline solid materials, this comprehensive textbook provides foundational knowledge and recent developments of SSNMR, covering physical and theoretical background, experimental methods, and applications to pharmaceuticals, polymers, inorganic and hybrid materials, liquid crystals, and model membranes. Written by two expert authors to ensure a clear and consistent presentation of the subject, this textbook: Includes a brief introduction to the historical aspects and broad theoretical background of solid-state NMR spectroscopy Provides helpful illustrations to explain the various SSNMR concepts and methods Features accessible descriptive text with self-consistent use of quantum mechanics Covers the experimental aspects of SSNMR spectroscopy and in particular a description of many useful pulse sequences Contains references to relevant literature Solid State NMR: Principles, Methods, and Applications is the ideal textbook for university courses on SSNMR, advanced spectroscopies, and a valuable single-volume reference for spectroscopists, chemists, and researchers in the field of materials.

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance PDF Author: G. A. Webb
Publisher: Royal Society of Chemistry
ISBN: 0854043624
Category : Medical
Languages : en
Pages : 419

Book Description
Annotation As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive coverage of the literature on this topic. For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an invaluable source of current methods and applications. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes". For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.

Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials

Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials PDF Author: Kenneth J.D. MacKenzie
Publisher: Elsevier
ISBN: 0080537103
Category : Science
Languages : en
Pages : 748

Book Description
Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

Advances in Magnetic Resonance

Advances in Magnetic Resonance PDF Author: Warren S. Warren
Publisher: Academic Press
ISBN: 0323156630
Category : Science
Languages : en
Pages : 309

Book Description
Advances in Magnetic Resonance: The Waugh Symposium, Volume 14 is a collection of manuscripts presented at the 1989 symposium on “High Resolution NMR in Solids , held at the Massachusetts Institute of Technology. The contributors provide 20- to 30-page articles consistent with AMR’s traditional emphasis on quantitative analysis of NMR techniques. Organized into 13 chapters, this book discusses the principles triple-quantum filtered two-dimensional exchange spectroscopy and its application in the measurement of cross correlation between pairs of dipole-dipole interactions. It then describes alternative ways of using fictitious spin in pulsed nuclear quadrupole resonance or NMR. General topics on the application of optical spectroscopy; the saturation of spin-spin energy by slow continuous bulk rotation; the frequency-switched Lee-Goldburg pulse cycle; and high-resolution proton NMR in solid systems are also explored. A chapter examines an entirely different view of spin dynamics in the presence of radio-frequency fields. This book also deals with the theoretical background and application of solid-state and zero-field NMR spectroscopies to structure determination. Lastly, the utilization of the Floquet formalism in the design of broadband propagators in two-level systems and the two classes of novel NMR phenomena related to the symmetrization postulate are discussed. Analytical and quantum chemists, physicists, biochemists, and materials science researchers will find this book invaluable.

Solid State NMR Spectroscopy

Solid State NMR Spectroscopy PDF Author: Melinda J. Duer
Publisher: John Wiley & Sons
ISBN: 0470999381
Category : Science
Languages : en
Pages : 592

Book Description
This book is for those familiar with solution-state NMR who are encountering solid-state NMR for the first time. It presents the current understanding and applications of solid-state NMR with a rigorous but readable approach, making it easy for someone who merely wishes to gain an overall impression of the subject without details. This dual requirement is met through careful construction of the material within each chapter. The book is divided into two parts: "Fundamentals" and "Further Applications." The section on Fundamentals contains relatively long chapters that deal with the basic theory and practice of solid-state NMR. The essential differences and extra scope of solid-state NMR over solution-state is dealt with in an introductory chapter. The basic techniques that all chapters rely on are collected into a second chapter to avoid unnecessary repetition later. Remaining chapters in the "Fundamentals" part deal with the major areas of solid-state NMR which all solid-state NMR spectroscopists should know about. Each begins with an overview of the topic that puts the chapter in context. The basic principles upon which the techniques in the chapter rely are explained in a separate section. Each of these chapters exemplifies the principles and techniques with the applications most commonly found in current practice. The "Further Applications" section contains a series of shorter chapters which describe the NMR techniques used in other, more specific areas. The basic principles upon which these techniques rely will be expounded only if not already in the Fundamentals part.

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance PDF Author: G. A. Webb
Publisher: Royal Society of Chemistry
ISBN: 085404115X
Category : Medical
Languages : en
Pages : 387

Book Description
For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage.

Multidimensional Solid-State NMR and Polymers

Multidimensional Solid-State NMR and Polymers PDF Author: Klaus Schmidt-Rohr
Publisher: Elsevier
ISBN: 0080925626
Category : Science
Languages : en
Pages : 501

Book Description
NMR spectroscopy is the most valuable and versatile analytical tool in chemistry. While excellent monographs exist on high-resolution NMR in liquids and solids, this is the first book to address multidimensional solid-state NMR. Multidimensional techniques enable researchers to obtain detailed information about the structure, dynamics, orientation, and phase separation of solids, which provides the basis of a better understanding of materials properties on the molecular level.Dramatic progress-much of it pioneered by the authors-has been achieved in this area, especially in synthetic polymers. Solid-state NMR now favorably competes with well-established techniques, such as light, x-ray, or neutron scattering, electron microscopy, and dielectric and mechanical relaxation.The application of multidimensional solid-state NMR inevitably involves use of concepts from different fields of science. This book also provides the first comprehensive treatment of both the new experimental techniques and the theoretical concepts needed in more complex data analysis. The text addresses spectroscopists and polymer scientists by treating the subject on different levels; descriptive, technical, and mathematical approaches are used when appropriate. It presents an overview of new developments with numerous experimental examples and illustrations, which will appeal to readers interested in both the information content as well as the potential of solid-state NMR. The book also contains many previously unpublished details that will be appreciated by those who want to perform the experiments. The techniques described are applicable not only to the study of synthetic polymers but to numerous problems in solid-state physics, chemistry, materials science, and biophysics. Presents original theories and new perspectives on scattering techniques Provides a systematic treatment of the whole subject Gives readers access to previously unpublished material Includes extensive illustrations